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Common Theoretical Issues

U. Nierste, Z. Ligeti, A. S. Kronfeld

1.1 Introduction

This chapter provides some of the theoretical background needed to interpret measurements
studied by Working Groups 1{3 (and reported in Chapters 6{8, respectively). These three
working groups deal with the decay of b-avored hadrons, and they are independent of
the production mechanism. The theory of b decays requires some elementary concepts on
symmetries and mixing, some knowledge of the standard electroweak theory, and some
information on how the b quark is bound into hadrons. On the other hand, the theory
of production, fragmentation, and spectroscopy|the subjects of Working Group 4 (and
Chapter 9)|is separate, dealing entirely with aspects of the strong interactions. Hence, the
theoretical background needed for Working Group 4 is entirely in Chapter 9, and theoretical
issues common to the working groups studying decays are collected together in this chapter.1

Although the experimental study of CP violation in the B system is just beginning [1{3],
there are several theoretical reviews [4{8] that the reader may want to consult for details
not covered here.

We start in Sec. 1.2 by reviewing how avor mixing and CP violation arise in the
Standard Model. Experiments of the past decade have veri�ed the SU(3) � SU(2) � U(1)
gauge structure of elementary particle interactions, in a comprehensive and very precise way.
By comparison, tests of the avor interactions are not yet nearly as broad or detailed. The
Standard Model, in which quark masses and mixing arise from Yukawa interactions with
the Higgs �eld, still serves as the current foundation for discussing avor physics. Sec. 1.2
discusses the standard avor sector, leading to the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, which contains a CP violating parameter for three generations. By construction,
the CKM matrix is unitary, which implies several relations among its entries and, hence,
between CP conserving and CP violating observables. Furthermore, the same construction
shows how, in the Standard Model, neutral currents conserve avor at the tree level, which
is known as the Glashow-Iliopoulos-Maiani (GIM) e�ect.

We emphasize that in extensions of the Standard Model the CKM mechanisms can
exist side-by-side with other sources of CP and avor violation. Many measurements are

1There is, unavoidably, some overlap with theoretical material in Chapters 6{8. We have attempted to
use consistent conventions and notation throughout.
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2 CHAPTER 1. COMMON THEORETICAL ISSUES

therefore needed to test whether the standard patterns prevail. Quark interactions are
obscured by con�nement, however. Therefore, Sec. 1.2 concludes with a brief summary of
the ways of avoiding or reducing uncertainties from nonperturbative QCD, and the much
of the rest of the chapter revisits various aspects in greater detail.

Sec. 1.3 covers aspects of B mesons that can be discussed without reference to their un-
derlying dynamics. The strong interactions conserve the quantum numbers P , T , and C of
parity, time reversal, and charge conjugation. We therefore start by discussing the transfor-
mation properties of currents and hadrons under these discrete symmetry transformations.
Once these concepts|and associated phase conventions|are �xed, one can discuss the
mixing between neutral mesons. (In the Standard Model, neutral meson mixing is induced
through one-loop e�ects.) Although a avored neutral meson and its anti-particle form a
two-state quantum mechanical system, the particles are not stable, so the two mass eigen-
states can have di�erent decay widths in general. Consequently, the physical description of
decay during mixing contains formulae that are not always simple and phase conventions
that are not always transparent. Sec. 1.3 provides such a general set of formulae, derived
with a self-consistent set of conventions.

The general discussion of Sec. 1.3, leads to a useful classi�cation of CP violation. There
can be CP violation in mixing, in decay, and in the interference of decays with and without
mixing. Sec. 1.4 gives the concrete mathematical de�nition of these three types of CP
violation, illustrated with examples. CP violation in many B decays is principally of one
type or another, although in general two or more of these types may be present, as is the
case with some kaon decays. We also work through two important examples of CP in the
interference of amplitudes: B ! J= KS and Bs ! D�

s K
�, where it is possible to use the

CP invariance of QCD to show that the CP asymmetry of these decays is independent of
the hadronic transition amplitude.

To gain a comprehensive view of avor physics, and decide whether the standard model
correctly describes avor-changing interactions, one has to consider QCD. Sec. 1.5 discusses
several theoretical tools to separate scales, so that the nonperturbative hadronic physics can
be treated separately from physics at higher scales, where perturbation theory is accurate.
Indeed, in B decays several length scales are involved: the scale of QCD, �QCD, the mass of
the b quark, mb, the higher masses of the W and Z bosons and the top quark, and, possibly,
higher scales of new physics. The �rst step is to separate out weak (and higher) scales
with an operator product expansion, leading to an e�ective weak Hamiltonian for avor-
changing processes. This formalism applies for all avor physics. For b quarks, one �nds
further simpli�cations, because mb � �QCD. Two tools are used to separate these scales,
heavy quark e�ective theory for hadronic matrix elements, and the heavy quark expansion
for inclusive decay rates. Sec. 1.5 also includes a brief overview of lattice QCD, which is
a promising numerical method to compute hadronic matrix elements of the electroweak
Hamiltonian, when there is at most one hadron in the �nal state. In particular, we discuss
how heavy quark e�ective theory can be used to control uncertainties in the numerical
calculation.

A further predictive aspect of the CKM mechanism, with only one parameter to describe
CP violation, is that observables in the B and Bs systems are connected to those in the kaon
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1.2. CP VIOLATION IN THE STANDARD MODEL 3

system. Sec. 1.6 gives an overview of K0�K0 mixing using the same formalism as in our
treatment of B0�B0 mixing in Sec. 1.3. This also gives us the opportunity to introduce the
most important constraints from kaon physics: not only those currently available but also
those that could be measured in the coming decade. Finally, Sec. 1.7 gives a summary of
expectations for measurements of the unitarity triangle, based on global �ts of kaon mixing
and CP conserving observables in B physics.

1.2 CP Violation in the Standard Model

As mentioned in the introduction, in the Standard Model quark masses, avor violation, and
CP violation all arise from Yukawa interactions among the quark �elds and the Higgs �eld.
In this section we review how these phenomena appear, leading to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. From a theoretical point of view, the CKM mechanism could, and
probably does, exist along with other sources of CP violation. We therefore also discuss
some of the important features of the CKM model, to provide a framework for testing it.

1.2.1 Yukawa interactions and the CKM matrix

Let us begin by recalling some of the most elementary aspects of particle physics. Experi-
ments have demonstrated that there are several species, or avors, of quarks and leptons.
They are the down-type quarks (d, s, b), up-type quarks (u, c, t), charged leptons (e, �, �),
and neutrinos (�e, ��, �� ). They interact through the exchange of gauge bosons: the weak
bosons W� and Z0, the photon, and the gluons. These interactions are dictated by local
gauge invariance, with gauge group SU(3) � SU(2) � U(1)Y . With this gauge symmetry,
and the observed quantum numbers of the fermions, at least one scalar �eld is needed to
accommodate quark masses, and, in turns out, the couplings to this �eld can generate avor
and CP violation.

One of the most striking features of the charged-current weak interactions is that they do
not couple solely to a vector current (as in QED and QCD) but to the linear combination of
vector and axial vector currents V �A. As a consequence, the electroweak theory is a chiral
gauge theory, which means that left- and right-handed fermions transform di�erently under
the electroweak gauge group SU(2) � U(1)Y . The right-handed fermions do not couple to
W�, and they are singlets under SU(2):

ER = (eR; �R; �R) ; YE = �1 ;
UR = (uR; cR; tR) ; YU =

2

3
; (1.1)

DR = (dR; sR; bR) ; YD = �1
3
;

where the hypercharge Y is given. For convenience below, the three generations are grouped
together. The gauge and kinetic interactions for G generations of these �elds are

LR =
GX
i=1

�EiR(i=@ � g1YE =B)E
i
R + �Di

R(i=D � g1YD =B)D
i
R + �U iR(i =D � g1YU =B)U

i
R ; (1.2)
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where B is the gauge boson of U(1)Y , with coupling g1, and D
� is the covariant derivative

of QCD: quarks are triplets under color SU(3). On the other hand, the left-handed fermions
do couple to W�, so they are doublets under SU(2):

LL =

��
�e
e

�
L
;

�
��
�

�
L
;

�
��
�

�
L

�
; YL = �1

2
;

QL =

��
u
d

�
L
;

�
c
s

�
L
;

�
t
b

�
L

�
; YQ =

1

6
: (1.3)

The SU(2) quantum number is called weak isospin, and the third component I3 distinguishes
upper and lower entries. The gauge and kinetic interactions for G generations of these �elds
are

LL =
GX
i=1

�LiL(i=@ � g1YL=B � g2 =W )LiL + �QiL(i=D � g1YQ=B � g2 =W )QiL ; (1.4)

where W = W a�a=2 are the gauge bosons of SU(2), with gauge coupling g2. Note that
as far as gauge interactions are concerned, the generations are simply copies of each other,
and LR + LL possesses a large global avor symmetry. For G generations, the symmetry
group is U(G)5, that is, a U(G) symmetry for each of ER, UR, DR, LL, and QL.

The assignments of SU(2) and U(1)Y quantum numbers follow from simple, experimen-
tally determined properties of weak decays. For example, by the mid-1980s measurements
of decays of b-avored hadrons had shown the weak isospin of bL to be �1

2 [9]. Conse-
quently, its isopartner tL had to exist, for symmetry reasons, although several years passed
before the top quark was observed at the Tevatron. In contrast, gauge symmetry does not
motivate the inclusion of right-handed neutrinos, which would be neutral under all three
gauge groups. For this reason, they are usually omitted from the \standard" model.

With only gauge �elds and fermions, the model is incomplete. In particular, it does not
accommodate the observed non-zero masses of the quarks, charged leptons, and weak gauge
bosons W� and Z0. For example, masses for the charged fermions2 normally would come
from interactions that couple the left- and right-handed components of the �eld, such as

Lm = �m � � R L + � L R
�
; (1.5)

where, in the case at hand,  2 fe; �; �; d; s; b; u; c; tg. With the �elds introduced above,
one would have to combine a component of a doublet with a singlet, which would violate
SU(2). Any pairing of left- and right-handed �elds with the listed hypercharges would
violate U(1)Y as well.

To construct gauge invariant interactions coupling left- and right-handed fermions, at
least one additional �eld is necessary. For simplicity, let us begin with only the �rst gener-
ation leptons. Consider

LY = �yeiÆ �lL� eR � ye�iÆ �eR �
ylL; (1.6)

2Because it is completely neutral, a right-handed neutrino may have a so-called Majorana mass term,
coupling neutrino to neutrino, instead of|or in addition to|a Dirac mass term, coupling neutrino to anti-
neutrino. For this reason neutrino masses are even more perplexing than quark and charged lepton masses.
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1.2. CP VIOLATION IN THE STANDARD MODEL 5

where �lL = (��L; �eL), and y is real. If the quantum numbers of � are chosen suitably, then
the interaction LI would be gauge (and Lorentz) invariant. To preserve Lorentz invariance,
� must have spin 0. To preserve invariance under U(1)Y , the hypercharge of � must be
Y� = YL � YE = +1

2 . To preserve invariance under SU(2) �, must be a doublet,

� =

�
�+

�0

�
: (1.7)

The superscripts denote the electric charge Q = Y + I3. An interaction similar to LY was
�rst introduced by Yukawa to describe the decay �+ ! �+��, so it is called a Yukawa
interaction, and the coupling y is called a Yukawa coupling.

At �rst glance, the interaction in Eq. (1.6) appears to violate CP , with a strength
proportional to y sin Æ. One may, however, remove Æ, by exploiting the invariance of LR+LL
under independent changes in the phases of eR and lL. Thus, the one-generation Yukawa
interaction has only one real parameter, y, and it conserves CP .

Since it is charged under SU(2) � U(1)Y , the �eld � has gauge interactions, which
are dictated by symmetry. The scalar �eld may also have self-interactions, which are not
dictated by symmetry. If one limits one's attention to renormalizable interactions

V (�) = ��v2�y�+ �(�y�)2; (1.8)

with two new parameters, v and �. The state with no propagating particles, called the
vacuum, is realized when � minimizes V (�). The quartic coupling � must be positive;
otherwise the potential energy would be unbounded from below, and the vacuum would
be unstable. If v2 < 0, then there is a single minimum of the potential, with vacuum
expectation value h�i = 0; this possibility does not interest us here. If v2 > 0, then V (�)
takes the shape of a sombrero with a three-dimensional family of minima:

h�i = eih�
ai�a=2v

�
0

v=
p
2

�
; (1.9)

parametrized by h�ai. Through an x-independent SU(2) transformation, one can set h�ai =
0. Although the Lagrangian fully respects local SU(2)�U(1)Y gauge symmetry, the vacuum
solution of the equations of motion given in Eq. (1.9) does not: this is called spontaneous
(as opposed to explicit) symmetry breaking.

Physical particles arise from uctuations around the solution of the equations of motion,
so one writes

�(x) = ei�
a(x)�a=2v

�
0

[v + h(x)]=
p
2

�
: (1.10)

The vacuum expectation values of the uctuation �elds are h�ai = hhi = 0. Masses of the
physical particles are found by inserting Eq. (1.10) into the expressions for the interactions
in the Lagrangian and examining the quadratic terms. By comparing the �eReL terms in
LY and Lm, one sees that the electron mass in this model is me = yv=

p
2. Similarly, from

V (�) the �eld h is seen to have a (squared) mass m2
h = 2�v2, and from the kinetic energy

of the scalar �eld non-zero masses for three of the gauge bosons arise: m2
W� = 1

4g
2
2v

2 and
m2
Z0 = 1

4 (g
2
1 + g22)v

2, where Z0 is the massive linear combination of W 3 and B. (The

Report of the B Physics at the Tevatron Workshop
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orthogonal combination is the massless photon .) The amplitude for muon decay is, to
excellent approximation, proportional to g22=m

2
W . Therefore, one can obtain the vacuum

expectation value from the Fermi decay constant, �nding v = 246 GeV.

Repeating this construction with
�
�uL; �dL

�
and dR requires a doublet with hypercharge

YQ � YD = +1
2 . The Standard Model uses the same doublet as for leptons. Repeating it

with
�
�uL; �dL

�
and uR requires a doublet with hypercharge YQ � YU = �1

2 . The Standard
Model uses the charge-conjugate

~� � i�2�
� =

�
�0

���
�

(1.11)

of the doublet used for leptons. In the one-generation case, three real Yukawa couplings are
introduced, leading to masses for the electron, down quark, and up quark.

With G generations the full set of Yukawa interactions is complicated. It is instructive
to leave G arbitrary for now, and to compare the physics for G = 2, 3, 4, later on. The
generations may interact with each other as in

LY = �
GX

i;j=1

h
ŷeij

�LiL�E
j
R + ŷdij

�QiL�D
j
R + ŷuij

�QiL
~�U jR + h:c:

i
; (1.12)

because no symmetry would enforce a simpler structure. For G generations, the Yukawa
matrices are complex G�G matrices. At �rst glance, each matrix ŷa seems to introduce 2G2

parameters: G2 that are real and CP -conserving, and another G2 that are imaginary and
CP violating. But, as in the one-generation case, one must think carefully about physically
equivalent matrices before understanding how many physical parameters there really are.

Let us consider the leptons �rst. As mentioned above, the non-Yukawa part of the
Lagrangian is invariant under the following transformation of generations

ER 7! RER ; �ER 7! �ERR
y;

LL 7! SLL ; �LL 7! �LLS
y; (1.13)

where R 2 U(G)ER and S 2 U(G)LL . That means that the Yukawa matrix ŷe is equivalent
to ye = SŷeRy. By suitable choice, ye can be made diagonal, real, and non-negative. The
leptons' Yukawa interactions now read

LY l = �
GX
i=1

h
yei
�LiL�E

i
R + h:c:

i
: (1.14)

Note that if S and R achieve this structure, so do S0 = DS and R0 = DR, where
D = diag (ei'1 ; : : : ; ei'G). Thus, part of the transformation from ŷe to ye is redundant
and must not be counted twice. (The freedom to choose these phases leads to global con-
servation of lepton avor.) Hence, the transformation removes 2G2�G parameters, leaving
G independent entries in ye. Since all are real, there is no CP violation.

For the quarks the reasoning is the same but the algebra is trickier. There are now three
distinct U(G) symmetries, and the non-Yukawa Lagrangian is invariant under
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1.2. CP VIOLATION IN THE STANDARD MODEL 7

DR 7! RdDR ; �DR 7! �DRR
y
d ;

UR 7! RuUR ; �UR 7! �URR
y
u ; (1.15)

QL 7! SuQL ; �QL 7! �QLS
y
u :

One may again exploit Su and Ru to transform ŷu into the diagonal, real, non-negative
form yu. Then the transform of ŷd is, in general, neither real nor diagonal. Instead

Suŷ
dRy

d = V yd ; (1.16)

where yd = Sdŷ
dRy

d is diagonal, real, and non-negative, and

V = SuS
y
d (1.17)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [10,11]. By construction, V is a G�G
unitary matrix. The quarks' Yukawa interactions now read

LY q = �
GX

i;j=1

h
ydj

�QiL�VijD
j
R + h:c:

i
�

GX
i=1

h
yui

�QiL
~�U iR + h:c:

i
: (1.18)

If Su, Ru, and Rd achieve this structure, so do e
i'Su, e

i'Ru, and e
i'Rd. (The freedom to

choose this phase leads to global conservation of total baryon number.) Thus, the manipu-
lations remove 3G2 � 1 parameters from the 4G2 in two arbitrary G�G matrices, leaving
G2 + 1. Of these, 2G are in yu and yd, and the other (G � 1)2 are in the CKM matrix V .
One can also count separately the real and imaginary parameters. Since a G � G unitary
matrix has 1

2G(G� 1) real and 1
2G(G+1) imaginary components, one �nds that the CKM

matrix has 1
2G(G � 1) real, CP -conserving parameters, and 1

2(G � 1)(G � 2) imaginary,
CP violating parameters. For example, the case G = 2 has no CP violation from this
mechanism, G = 3 has a single CP violating parameter, and G = 4 has three.

The CKM matrix V arises from the misalignment of the matrices Su and Sd. Under
circumstances that preserve some of the avor symmetry, they can be partially aligned, and
then V contains even fewer physical parameters. In an example with three generations,
if two entries either in yu or in yd are equal, partial re-alignment removes one real angle
and one phase. Therefore, the CKM mechanism leads to CP violation only if like-charged
quarks all have distinct masses.

Substituting Eq. (1.10) into LY and keeping quadratic terms shows that the masses are

ma
k =

vp
2
yak ; (1.19)

for k = 1; 2; 3, and a = e; d; u. For quarks this is easiest to see if one sets

QL =

�
UL
V DL

�
; (1.20)

which diagonalizes the mass terms for the down-like quarks in Eq. (1.18). In this basis the
CKM matrix migrates to the charged-current vertex:

L �UWD = � g2p
2

h
�UL=W

+V DL + �DLV
y=W�UL

i
; (1.21)
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where W� = (W 1 � iW 2)=
p
2. The basis in (1.20), with diagonal mass matrices and the

CKM matrix in the charged currents of quarks, is usually adopted in phenomenology.

Note that the neutral current interactions are una�ected by writing V in (1.20). Thus,
there are no avor-changing neutral currents (FCNC) at the tree level in the Standard
Model. This is known as the Glashow-Iliopoulus-Maiani (GIM) e�ect [12]. Even at the
loop level, where the FCNCs do arise, the GIM mechanism can suppress processes by a
factor m2

q=m
2
W , which is very small, except in the case of the top quark. GIM suppression

and Cabibbo suppression (i.e., factors of �) both imply near-null predictions for several
processes. Observation of any of these would constitute a clear signal of non-standard
physics.

Note that quark and lepton masses arise from the same microscopic interactions as CKM
avor violation. In Nature, the quark and lepton masses vary over orders of magnitude.
Thus, the large avor symmetry that would arise in the absence of Yukawa interactions
is severely broken. In the Standard Model, the Yukawa couplings are simply chosen to
contrive the observed masses. This is unsatisfactory, but we lack the detailed experimental
information needed to develop a deeper theory of avor.

1.2.2 General models

The foregoing discussion makes clear that the unitary CKM matrix arises in an algebraic
way. Therefore, the mechanism can survive in models with a more complicated Higgs sector.
The Standard Model is a model of economy: a single doublet generates mass for the gauge
bosons, charged leptons, down-like quarks, and up-like quarks. In models with two doublets
(and three or more generations), the CKM source of CP violations remains, but there can
be additional CP violation in the Higgs sector [13].

To emphasize this point, let us consider an extreme example with

LY = �LiL�
e
ijE

j
R + �QiL�

d
ijD

j
R + �QiL

~�uijU
j
R + h:c:; (1.22)

where i; j run over generations, and we take the basis in which gauge interactions do not
change generations. The tilde on ~�u is introduced so that, with ~�u = i�2�

u�, all �a are
(matrix) �elds with hypercharge +1

2 . Here the Yukawa couplings are absorbed into the
�elds|Eq. (1.22) is hideous enough as it is. Since all �a are doublets under SU(2), they
all would participate in electroweak symmetry breaking.

Suppose the Higgs potential, now a complicated function of all the scalar �elds, leads
to vacuum expectation values of the form

h�aiji =
�

0
m̂a
ij

�
: (1.23)

Then the m̂a
ij are mass matrices, and the algebra leading to the real, physical masses ma

k

and the CKM matrix is just as above. The CKM matrix, V , survives and should lead to
CP violation, because there is no good reason for the phase in V to be small. There would,
however, almost certainly be new sources of CP violation from the Higgs sector.
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1.2. CP VIOLATION IN THE STANDARD MODEL 9

1.2.3 CP violation from a unitary CKM matrix

In the standard, one-doublet, model, we see that avor and CP violation arise solely through
the CKM matrix. Furthermore, in more general settings, the CKM matrix can still arise,
but there may be other sources of CP violation as well. If the CKM matrix is the only
source of CP violation, there are many relations between CP -conserving and CP violating
observables that arise from the fact that V is a unitary matrix. This section outlines a
framework for testing whether these constraints are, in fact, realized.

A useful way [14] of gauging the size of CP violation starts with the commutator of the
mass matrices, C = [m̂um̂uy; m̂dm̂dy], which can be re-written

C = Syu

h
(mu)2; V (md)2 V y

i
Su ; (1.24)

to show that detC depends on the physical masses and V . After some algebra one �nds

detC = �2iFuFdJ ; (1.25)

where

Fu = (m2
u �m2

c)(m
2
c �m2

t )(m
2
t �m2

u) ; (1.26)

Fd = (m2
d �m2

s)(m
2
s �m2

b)(m
2
b �m2

d) ; (1.27)

J = Im [V11V
�
21 V22V

�
12] : (1.28)

To arrive at Eq. (1.25) one makes repeated use of the property V V y = 11, especially that

J = Im [VijV
�
kj VklV

�
il ]
X
m

"ikm
X
n

"jln ; (1.29)

for all combinations of i, j, k, and l. The determinant detC captures several essential
features of CP violation from the CKM mechanism. It is imaginary, reminding us that CP
violation stems from a complex coupling. More signi�cantly, there is no CP violation unless
Fu, Fd, and J are all di�erent from zero. Non-vanishing Fu and Fd codify the requirements
on the quark masses given above. Non-vanishing J codi�es requirements on V , which are
clearest after choosing a speci�c parameterization. The key point, however, is that the value
taken by J is independent of the parameterization, by construction of detC.

To emphasize the physical transitions associated with the CKM matrix, it is usually
written

V =

0BB@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1CCA ; (1.30)

so that the entries are labeled by the quark avors. From Eq. (1.21), the vertex at which
a b quark decays to a W� and c quark is proportional to Vcb; similarly, the vertex at
which a c quark decays to a W+ and s quark is proportional to V �

cs. Because V is unitary,
jVudj2+ jVusj2+ jVubj2 = 1, and similarly for all other rows and columns. These constraints
give information on unmeasured (or poorly measured) elements of V . For example, because
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Vcd Vcb
*

Vud Vub
* Vtb

*Vtd

βγ

α

Vud Vub
*

Vcb
*Vcd Vcd

Vtd

Vcb
*

Vtb
*

βγ

α

(0,0)

(ρ,η)

(1,0)
Figure 1.1: The unitarity triangle. The version on the left directly expresses
Eq. (1.31). The rescaled version shows the de�nition of (��; ��).

jVcbj and jVubj are known to be small, jVtbj should be very close to 1|if, indeed, there are
only three generations. Furthermore, jVtsj and jVtdj must also be small.

Even more interesting constraints come from the orthogonality of columns (or rows) of
a unitary matrix. Taking the �rst and third columns of V , one has

VudV
�
ub + VcdV

�
cb + VtdV

�
tb = 0 : (1.31)

Equation (1.31) says that the three terms in the sum trace out a triangle on the complex
plane. Because it is a consequence of the unitarity property of V , this triangle is called the
\unitarity triangle," shown in Fig. 1.1. The lengths of the sides are simply jVudV �

ubj, etc.,
and the angles are

� = arg

"
� VtdV

�
tb

VudV
�
ub

#
; � = arg

"
�VcdV

�
cb

VtdV
�
tb

#
;  = arg

"
�VudV

�
ub

VcdV
�
cb

#
: (1.32)

The notation � � �1, � � �2,  � �3 is also used. By construction � + � +  = �. The
area of the triangle is jJ j=2 and the terms trace out the triangle in a counter-clockwise
(clockwise) sense if J is positive (negative). In fact, there are �ve more unitarity triangles,
all with area jJ j=2 and orientation linked to the sign of J .

The unitarity triangle(s) are useful because they provide a simple, vivid summary of
the CKM mechanism. Separate measurements of lengths, through decay and mixing rates,
and angles, through CP asymmetries, should �t together. Furthermore, when one combines
measurements|from the B, Bs, K, and D systems, as well as from hadronicW decays|all
triangles should have the same area and orientation. If there are non-CKM contributions
to avor or CP violation, however, the interpretation of rates and asymmetries as mea-
surements of the sides and angles no longer holds. The triangle built from experimentally
de�ned sides and angles will not �t with the CKM picture.

In the parameterization favored by the Particle Data Book [15]

V =

0BB@
c12c13 s12c13 s13e

�iÆ13

�s12c23 � c12s23s13e
iÆ13 c12c23 � s12s23s13e

iÆ13 s23c13

s12s23 � c12c23s13e
iÆ13 �c12s23 � s12c23s13e

iÆ13 c23c13

1CCA ; (1.33)
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1.2. CP VIOLATION IN THE STANDARD MODEL 11

where cij = cos �ij and sij = sin �ij. The real angles �ij may be chosen so that 0 � �ij � �=2,
and the phase Æ13 so that 0 � Æ13 < 2�. With Eq. (1.33) the Jarlskog invariant becomes

J = c12c23c
2
13s12s23s13 sin Æ13 : (1.34)

The parameters must satisfy

Æ13 6= 0; � ; �ij 6= 0; �=2 ; (1.35)

otherwise J vanishes. Since CP violation is proportional to J , the CKM matrix must not
only have complex entries, but also non-trivial mixing; otherwise the KM phase Æ13 can be
removed.

A convenient parameterization of the CKM matrix is due to Wolfenstein [16]. It stems
from the observation that the measured matrix obeys a hierarchy, with diagonal elements
close to 1, and progressively smaller elements away from the diagonal. This hierarchy can
be formalized by de�ning �, A, �, and � via

� � s12 ; A � s23=�
2 ; �+ i� � s13e

iÆ13=A�3 : (1.36)

From experiment � � 0:22, A � 0:8, and
p
�2 + �2 � 0:4, so it is phenomenologically useful

to expand V in powers of �:

V =

0BB@
1� 1

2�
2 � A�3(�� i�)

�� 1� 1
2�

2 A�2

A�3(1� �� i�) �A�2 1

1CCA+O(�4) : (1.37)

The most interesting correction at O(�4) for our purposes is ImVts = �A�4�. The Jarlskog
invariant can now be expressed J = A2�6� � (7�10�5)�. One sees that CKM CP violation
is small not because Æ13 is small but because avor violation must also occur, and avor
violation is suppressed, empirically, by powers of �.

The unitarity triangle in Eq. (1.31) is special, because its three sides are all of order
A�3. The triangle formed from the orthogonality of the �rst and third rows also has this
property, but it is not accessible, because the top quark decays before the mesons needed
to measure the angles are bound. The other triangles are all long and thin, with sides
(�; �;A�5) (e.g., for the kaon) or (�2; �2; A�4) (e.g., for the Bs meson).

It is customary to rescale Eq. (1.31) by the common factor A�3, to focus on the less well-
determined parameters (�; �). In the context of the Wolfenstein parameterization, there are
many ways to do this. Since we anticipate precision in experimental measurements, and also
in theoretical calculations of some important hadronic transition amplitudes, it is useful to
choose an exact rescaling. We choose to divide all three terms in Eq. (1.31) by VcdV

�
cb and

de�ne3

��+ i�� � �VudV
�
ub

VcdV
�
cb

: (1.38)

3This de�nition di�ers at O(�4) from the original one in Ref. [17].
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12 CHAPTER 1. COMMON THEORETICAL ISSUES

Then the rescaled triangle, also shown in Fig. 1.1, has its apex in the complex plane at
(��; ��). The angles of the triangle are easily expressed

� = tan�1
�

��

��2 + ��(��� 1)

�
; � = tan�1

�
��

1� ��

�
;  = tan�1

�
��

��

�
; (1.39)

Since ��, ��, and 1 � �� could easily be of comparable size, the angles and, thus, the corre-
sponding CP asymmetries could be large.

At the Tevatron there is also copious production of Bs mesons. The corresponding
unitarity triangle is

VusV
�
ub + VcsV

�
cb + VtsV

�
tb = 0 ; (1.40)

replacing the d quark with s. In Eq. (1.40) the �rst side is much shorter than the other
two. Therefore, the opposing angle

�s = arg

"
�VtsV

�
tb

VcsV �
cb

#
= �2� +O(�4) (1.41)

is small, of order one degree. Therefore, the asymmetries in Bs !  �(0) and Bs !  � are
much smaller than in the corresponding B decays. On the other hand, this asymmetry is
sensitive to new physics in B0

s � B0
s mixing. In the standard model, as discussed below,

mixing is induced by loop processes. When, as here, there is also Cabibbo suppression, it is
easy for the non-standard phenomena to compete. Thus, in the short term a measurement
of �s represents a search for new physics, whereas in the long term it would be a veri�cation
of the CKM picture.

The unitarity triangle for the D system comes from the orthogonality of the top two
rows of the CKM matrix. It is even longer and thinner than the one for the Bs system.
Consequently, a non-zero measurement of the CP asymmetry associated with the small
angle is a clear sign of new physics. It seems that experiments to measure the D-system
unitarity triangle are not yet feasible.

1.2.4 Hadronic uncertainties and clean measurements

At a super�cial level, the way to test the CKM picture is to measure rates and asymmetries
that are sensitive to the sides and angles (of all triangles), in as many ways as possible.
A serious obstacle, however, is that the quarks are con�ned in hadrons. Consequently, most
relations between experimental observables and Lagrangian-level couplings, like the CKM
matrix, involve hadronic matrix elements. In this subsection, we summarize briey how to
treat the matrix elements, with an eye toward identifying processes that are relatively free
of hadronic uncertainty.

There are several approaches for treating the hadronic matrix elements, none of which
is universally useful. In Sec. 1.5 we introduce some of the essential tools in greater detail.
Here we illustrate the possibilities with examples.
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1.2. CP VIOLATION IN THE STANDARD MODEL 13

� Perfect (or essentially perfect) symmetries of QCD, such as C or CP : When a single
CKM factor dominates a process, the QCD part of the amplitude cancels in ratios
such as the CP asymmetry in interference between decays with and without mixing.
The two best examples are in the asymmetries for4 B !  KS and Bs ! D�

s K
�.

Assuming that CP violation comes only from the CKM matrix, the �rst class of
modes cleanly yields sin 2�, and the other pair of modes cleanly yields sin( � 2�s).

� Approximate symmetries, such as isospin, avor SU(3), chiral symmetry, or heavy
quark symmetry: The best-known examples are when the symmetry restricts a form
factor for semileptonic decays. Isospin and n ! pe��e give jVudj; avor SU(3) and
K ! �e��e give jVusj; and heavy quark symmetry and B ! D�`��` give jVcbj. The
hadronic uncertainty is now in the deviation from the symmetry limit. An even more
intriguing use of isospin is to relate the form factor of K0 ! �+e��e to that of K

0;� !
�0;����. The rare ��� decays are, thus, essentially free of hadronic uncertainties.5

� Lattice QCD: This computational method is sound, in principle, for hadronic matrix
elements with at most one �nal-state hadron. Limitations in computer power have led
to an approximation, called the quenched approximation, whose error is diÆcult to
quantify. With increases in computer resources, lattice results should, in the future,
play a more important role in determining the sides of the unitarity triangles. For
more details, see Sec.1.5.4.

� Perturbative QCD for exclusive processes: It may be possible to calculate the strong
phases of certain nonleptonic B decays using perturbative QCD. This is in some ways
analogous to computing cross sections in hadronic collisions, and the nonperturba-
tive information is captured in light-cone distribution amplitudes [20]. There are, at
present, two di�erent approaches [21,22], whose practical relevance remains an open
question.

� QCD sum rules: Like lattice and perturbative QCD, sum rules are based on QCD and
�eld theory. Uncertainty estimates are usually semi-quantitative and it is diÆcult to
reduce them in a controlled manner.

� Models of QCD, such as quark models, naive factorization, etc: These techniques can
be applied for back-of-the-envelope estimates. There is no prospect for providing a
quotable error and, thus, should not be used in quantitative work.

In summary, at the present time the cleanest observables are the CP asymmetries in B0
d

decays to charmonium+kaon and in B0
s decays to D

�
s K

�. The rare decay KL ! �0��� is
free of theoretical uncertainties at a similar level, but presents a big experimental challenge.
Semileptonic decays restricted by symmetries as well as K� ! ����� are a step down,
but still good. With enough computer power to overcome the quenched approximation,
lattice QCD could yield, during the course of Run II, controlled uncertainty estimates for
neutral-meson mixing and leptonic and semileptonic decays of a few percent.

4Here, and in the rest of this chapter,  stands for any charmonium state, J= ,  0, �c, etc.
5In the charged mode there is an uncertainty stemming from the uncertainty in the charmed quark mass.

It has been estimated to be around 5% in jVtsVtdj [18]. Power suppressed corrections to K ! ���� have also
been estimated and found to be small [19].
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14 CHAPTER 1. COMMON THEORETICAL ISSUES

1.3 General Formalism for Mixing and CP Violation

This section is devoted to the general formalism for meson mixing and CP violation. Much
of the material can also be found in other review articles and reports [4,5,8], but some
topics require a di�erent viewpoint in the light of the B physics program at a hadron
collider: unlike the B factories the Tevatron will be able to study B0

s mesons. The two
mass eigenstates in the B0

s system may involve a sizable width di�erence ��, which must
be included in the formulae for the B0

s time evolution. We consequently present these
formulae including all e�ects from a non-vanishing ��.

Many details of the formalism depend on conventions, particularly in the choice of the
complex phases that unavoidably appear in any CP violating physical system. We would
like to discourage the reader from combining formulae from di�erent sources, so we try to
give a comprehensive and self-contained presentation of the subject. We start by introducing
the discrete transformation C, P and T in Sec. 1.3.1. Experimentally we know that C, P
and T are symmetries of the electromagnetic and strong interactions, so the corresponding
quantum numbers can be used to classify the hadron states. The description in Sec. 1.3.2
of the time evolution of the neutral B meson system is applicable to both the B0

d and
the B0

s meson systems. Sec. 1.3.3 deals with untagged B0 decays and Sec. 1.3.4 presents
the formulae for CP asymmetries. Finally, in Sec. 1.3.4 we discuss phase conventions and
rephasing invariant quantities.

1.3.1 Discrete transformations

In this section we introduce the parity, P , time reversal, T , and charge conjugation, C,
transformations. P and T are de�ned through their action on coordinate vectors x =
(x0; x1; x2; x3): P ips the sign of the spatial coordinates x1,x2,x3 and T changes the time
component t = x0 into �t. Adopting the convention g�� = diag(1;�1;�1;�1) for the
Lorentz metric, one can compactly express the transformations in terms of x� = g��x

� :

P : x� ! x� ;

T : x� ! �x� : (1.42)

The de�nition (1.42) implies that the derivative operator @� = @=@x� and the momentum
p� transform under P and T in the same way as x�. Finally, C interchanges particles and
anti-particles. Apart from the weak interactions, these transformations are symmetries of
the Standard Model. It is therefore convenient to classify hadronic states by their C, P and
T quantum numbers, which are multiplicative and take the values �1.

The Lagrangian of the Standard Model and its possible extensions contain bilinear
currents of the quark �elds, to which gauge bosons and scalar �elds couple. For example,
as discussed in Sec. 1.2, the W boson �eld W � couples to the chiral vector current bL�cL.
Quark bilinears also appear in composite operators which represent the Standard Model
interactions in low energy e�ective Hamiltonians, cf., Sec. 1.5.1. To understand how these
interactions work, it is helpful to list the transformation of the quark bilinears under C, P ,
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1.3. GENERAL FORMALISM FOR MIXING AND CP VIOLATION 15

current bR dL (x
�) bL � dL (x

�) bR ���dL (x
�)

C dR bL (x
�) �C �dR � bR(x�) �C �dR ��� bL(x�)

P bL dR (x�) �P bR 
� dR (x�) �P bL �

�� dR (x�) �P

CP dL bR (x�) �C�P �dL � bL (x�) �C�P �dL ��� bR (x�) �C�P
T bR dL (�x�) �T bL 

� dL (�x�) �T bR �
�� dL (�x�) �T

CPT dL bR (�x�) �C�P�T �dL � bL (�x�) �C�P �T dL ��� bR (�x�) �C�P �T
Table 1.1: C, P and T transformation properties of the chiral scalar, vector and
magnetic currents. The coordinate x in parentheses is the argument of both quark
�elds.

T and the combined transformations CP and CPT . For illustration we specify to currents
involving a b and a d �eld. The generic transformation under some discrete symmetry X is

X : b�d ! X b�dX�1; (1.43)

and Table 1.1 lists the transformation for the chiral scalar, vector and magnetic currents.
Here ��� = (i=2)[�; � ]. The transformation laws for the currents with opposite chirality
are obtained by interchanging L$ R in Table 1.1. The phase factors

�X = �bdX = ei(�
d
X
��b

X); X = C;P; T : (1.44)

depend on the quark avors, but for simplicity the avor indices of the �Xs have been
omitted in Table 1.1. One can absorb these arbitrary phase factors exp(i�qX) into the
de�nitions of the discrete transformations for every quark �eld in the theory. This feature
originates from the freedom to rede�ne any quark �eld by a phase transformation

q ! q ei�
q

: (1.45)

In the absence of avor-changing couplings the change in (1.45) is a U(1) symmetry transfor-
mation leaving the Lagrangian invariant. The corresponding conserved quantum number
is the avor of the quark q. After including the avor-changing interactions, the phase
transformations in (1.45) change the phases of the avor-changing couplings. The avor
symmetry is broken and every phase transformation (1.45) leads to a di�erent, but physi-
cally equivalent Lagrangian. In the case of the Standard Model these transform the Yukawa
couplings and, hence, the CKM matrix from one phase convention into another.

The currents in Table 1.1 create and destroy the meson states with the appropriate
quantum numbers. Since the QCD interaction, which binds the quarks into mesons, con-
serves C, P and T , the meson states transform like the corresponding currents in Table 1.1.
For example, the Bd meson is pseudoscalar and transforms under CP as

CP jB0
d (P

�)i = ��bdP �bdC jB0
d (P�)i ;

CP jB0
d (P

�)i = ��bdP ��bdC
� jB0

d (P�)i : (1.46)
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photon, gluon, Z boson W boson Higgs

�eld V � (x�) = A�(x�) ; A�; a(x�) ; Z�(x�) W�;� (x�) H (x�)

C �V � (x�) �W�;� (x�) H (x�)

P V� (x�) W�
� (x�) H (x�)

CP �V� (x�) �W�
� (x�) H (x�)

T V� (�x�) W�
� (�x�) H(�x�)

CPT �V � (�x�) �W�;� (�x�) H (�x�)
Table 1.2: C, Pand T transformation properties of bosons in the Standard Model.

The vacuum state j0i is invariant under C, P and T . Hence one �nds, for example,

h0j b�5d(x) jB0
d(P )i CP= h0j d�5b(x) jB0

d(P )i = ifBdP�e
�iP �x ; (1.47)

which is the de�nition of the B meson decay constant fBd . The phases �
bd
P �

bd
C from the CP

transformation of the pseudovector current b�5d = bR�dR � bL�dL and �bdP
��bdC

� from
(1.46) cancel in the �rst relation in (1.47). We can further multiply jB0

d(P )i and jB0
d(P )i

by another common phase factor (unrelated to CP ) to choose fBd positive.

Although C and P are unitary transformations, T is anti-unitary (i.e., T yT = 1 and
hT�jT i = h j�i). Thus, for example,

T jB0
d(P

�)i = hB0
d(�P�)j : (1.48)

The anti-unitary property of T means also that c-numbers, such as the CKM matrix, are
transformed into their complex conjugates.

Table 1.2 lists the transformation properties of the vector bosons and the scalar Higgs
�eld H appearing in the Standard Model. The transformation properties of the photon and
gluon �eld are deduced from the experimental observation that QED and QCD conserve C,
P and Tquantum numbers. For the weak gauge bosons the absence of CP and T violation
in the gauge sector �xes the transformation properties of W�;� and Z� under CP and T .
The assignment of the C and P transformations to the weak gauge bosons and the Higgs
in Table 1.2 is chosen such that the Standard Model conserves C and P in the absence of
fermion �elds. These assignments do not impose additional selection rules on the Standard
Model interactions and therefore have no observable consequences.

From Table 1.1 one can see why the weak interaction in the Standard Model violates
C and P . These transformations ip the chirality of the quark �elds, but left- and right-
handed �elds belong to di�erent representations of the SU(2) gauge group. The combined
transformation CP , however, maps the quark �elds onto �elds with the same chirality. Still,
the currents and their CP conjugates (i.e., the �rst and fourth rows of Table 1.1) are not
identical: instead they are Hermitian conjugates of each other. Since the Lagrangian of
any quantm �eld theory is Hermitian, it contains for each coupling of a quark current to a
vector �eld its Hermitian conjugate coupling as well. For example, the coupling of the W
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to b and u quarks in the Standard Model is

L = � g2p
2

h
Vub uL 

�bLW
+
� + V �

ub bL 
�uLW

�
�

i
: (1.49)

From Tables 1.1 and 1.2 one derives the CP transformation

CP L (CP )�1 = � g2p
2

h
Vub bL 

�uLW
�
� + V �

ub uL 
�bLW

+
�

i
; (1.50)

which is the same only if Vub = V �
ub. This illuminates why CP violation is related to complex

phases in couplings. Yet complex couplings alone are not suÆcient for a theory to violate
CP . A phase rotation (1.45) of the quark �elds in the CP transformed Lagrangian changes
the phases of the couplings. If we can in this way rotate the phases in CP L (CP )�1 back
into those in L, then CP is conserved. In our example (1.49) the choice �b��u = 2arg Vub
would transform CP L (CP )�1 back into L. As outlined in Sec. 1.2, Kobayashi and Maskawa
realized that it is not possible to remove all the phases, once there are more than two quark
generations [11].

It is also illustrative to apply the time reversal transformation to (1.49). It does not
modify the currents, but, due to its anti-unitary character, it ips the phases of the couplings
and thereby leads to the same result as the CP transformation. In our example we have
disregarded the changes in the arguments x� of the �elds shown in (1.42). Since physical
observables depend on the action, S =

R
d4xL(x), rather than on L, the sign of x� can be

absorbed into a change of the integration variables.

From Table 1.1 and Table 1.2 one can verify that the action of the Standard Model is
invariant under the combined transformation CPT . The CPT transformation simply turns
the currents and the vector �elds into their Hermitian conjugates. Due to L = Ly one has

S =

Z
d4xL(x) =

Z
d4x0 L(�x0) =

Z
d4x0 CPT L(x0) (CPT )�1 = CPT S (CPT )�1 : (1.51)

This CPT theorem holds in any local Poincar�e invariant quantum �eld theory [23]. It implies
that particles and antiparticles have the same masses and total decay widths. In certain
string theories CPT violation may be possible, and at low energies manifests itself in the
violation of Poincar�e invariance or of quantum mechanics [24]. In the standard framework
of quantum �eld theory, however, the CPT theorem is built in from the very beginning. For
example, the Feynman diagram for any decay or scattering process and its CPT conjugate
diagram are simply related by complex conjugation and give the same result for the decay
rate or cross section. Unless stated otherwise it is always assumed that CPT invariance
holds in all the formulae in this report. In this context it is meaningless to distinguish CP
violation and T violation.

1.3.2 Time evolution and mixing

In this section we list the necessary formulae to describe B0
d�B0

d mixing and B0
s �B0

s

mixing. The formulae are general and apply to both B0
d and to B0

s mesons, although with
di�erent values of the parameters. Eqs. (1.52){(1.62) are even correct for K0�K0 mixing
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Figure 1.2: Standard Model box diagrams inducing B0
d �B0

d mixing.

and D0�D0 mixing. In the following, the notation B0 represents either of the two neutral
B meson species with the standard convention that B0 (B0) contains a b antiquark (a
b quark).

B0 � B0 mixing refers to transitions between the two avor eigenstates jB0i and jB0i.
In the Standard Model B0�B0 mixing is caused by the fourth order avor-changing weak
interaction described by the box diagrams in Fig. 1.2. Such transitions are called j�Bj=2
transitions, because they change the bottom quantum number by two units. In the Standard
Model j�Bj=2 amplitudes are small, so measurements of B0 � B0 mixing could easily be
sensitive to new physics.

B0 � B0 mixing induces oscillations between B0 and B0. An initially produced B0 or
B0 evolves in time into a superposition of B0 and B0. Let jB0(t)i denote the state vector
of a B meson which is tagged as a B0 at time t = 0, i.e., jB0(t = 0)i = jB0i. Likewise
jB0(t)i represents a B meson initially tagged as a B0. The time evolution of these states is
governed by a Schr�odinger equation:

i
d

d t

� jB(t)i
jB(t)i

�
=

�
M � i

�

2

�� jB(t)i
jB(t)i

�
: (1.52)

The mass matrix M and the decay matrix � are t-independent, Hermitian 2� 2 matrices.
CPT invariance implies that

M11 =M22 ; �11 = �22 : (1.53)

j�Bj = 2 transitions induce non-zero o�-diagonal elements in (1.52), so that the mass
eigenstates of the neutral B meson are di�erent from the avor eigenstates jB0i and jB0i.
The mass eigenstates are de�ned as the eigenvectors of M � i�=2. We express them in
terms of the avor eigenstates as

Lighter eigenstate: jBLi = pjB0i+ qjB0i ;
Heavier eigenstate: jBHi = pjB0i � qjB0i ; (1.54)

with jpj2+ jqj2 = 1. Note that, in general, jBLi and jBHi are not orthogonal to each other.

The time evolution of the mass eigenstates is governed by the two eigenvalues MH �
i�H=2 and ML � i�L=2:

jBH;L(t)i = e�(iMH;L+�H;L=2)t jBH;Li ; (1.55)
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where jBH;Li (without the time argument) denotes the mass eigenstates at time t = 0:
jBH;Li = jBH;L(t = 0)i. We adopt the following de�nitions for the average mass and width
and the mass and width di�erences of the B meson eigenstates:

m =
MH +ML

2
=M11 ; � =

�L + �H
2

= �11 ;

�m = MH �ML ; �� = �L � �H :
(1.56)

�m is positive by de�nition. Note that the sign convention for �� is opposite to the one
used in Refs. [4{6,8]. In our convention the Standard Model prediction for �� is positive.

We can �nd the time evolution of jB(t)i and jB(t)i as follows. We �rst invert (1.54) to
express jB0i and jB0i in terms of the mass eigenstates and using their time evolution in
(1.55):

jB0(t)i = 1

2p

h
e�iMLt��Lt=2 jBLi + e�iMHt��H t=2 jBHi

i
;

jB0(t)i = 1

2q

h
e�iMLt��Lt=2 jBLi � e�iMH t��H t=2 jBHi

i
: (1.57)

These expressions will be very useful in the discussion of Bs mixing.
6 With (1.54) we next

eliminate the mass eigenstates in (1.57) in favor of the avor eigenstates:

jB0(t)i = g+(t) jB0i+ q

p
g�(t) jB0i ;

jB0(t)i = p

q
g�(t) jB0i+ g+(t) jB0i ; (1.58)

where

g+(t) = e�imt e��t=2
�

cosh
�� t

4
cos

�mt

2
� i sinh

�� t

4
sin

�mt

2

�
;

g�(t) = e�imt e��t=2
�
� sinh

�� t

4
cos

�mt

2
+ i cosh

�� t

4
sin

�mt

2

�
: (1.59)

Note that|owing to �� 6= 0|the coeÆcient g+(t) has no zeros, and g�(t) vanishes only
at t = 0. Hence an initially produced B0 will never turn into a pure B0 or back into a
pure B0. The coeÆcients in (1.59) will enter the formulae for the decay asymmetries in the
combinations

jg�(t)j2 = e��t

2

�
cosh

�� t

2
� cos (�mt)

�
;

g�+(t) g�(t) =
e��t

2

�
� sinh

�� t

2
+ i sin (�mt)

�
: (1.60)

6The Schr�odinger equation, (1.52), is not exactly valid, but the result of the so-called Wigner-Weisskopf

approximation [25] to the decay problem. In general, there are tiny corrections to the exponential decay
laws in (1.57) at very short and very large times [26]. These corrections are irrelevant for the mixing and
CP studies at Run II, but they must be taken into account in high precision searches for CPT violation [27].
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In a given theory, such as the Standard Model, one can calculate the o�-diagonal ele-
mentsM12 and �12 entering (1.52) from j�Bj=2 diagrams. In order to exploit the formulae
(1.57){(1.59) for the time evolution we still need to express �m, �� and q=p in terms of
M12 and �12. By solving for the eigenvalues and eigenvectors of M � i�=2 one �nds

(�m)2 � 1

4
(��)2 = 4 jM12j2 � j�12j2 ; (1.61a)

�m�� = �4Re (M12�
�
12) ; (1.61b)

q

p
= ��m+ i��=2

2M12 � i�12
= � 2M�

12 � i��12
�m+ i��=2

: (1.61c)

The relative phase between M12 and �12 appears in many observables related to B mixing.
We introduce

� = arg

�
�M12

�12

�
: (1.62)

Now one can solve (1.61) for �m and �� in terms of jM12j, j�12j and �.
The general solution is not illuminating, but a simple, approximate solution may be

derived when
j�12j � jM12j ; and ��� �m: (1.63)

These inequalities hold (empirically) for both B0 systems. We �rst note that j�12j � �
always, because �12 stems from the decays into �nal states common to B0 and B0. For the
B0
s meson the lower bound on �mBs establishes experimentally that �Bs � �mBs . Hence

�s12 � �mBs , and Eqs. (1.61a) and (1.61b) imply �mBs � 2jM s
12j and j��Bs j � 2j�s12j,

so that (1.63) holds. For the B0
d meson the experiments give �mBd � 0:75�Bd . The

Standard Model predicts j�d12j=�Bd = O(1%), but �d12 stems solely from CKM-suppressed
decay channels (common to B0

d and B0
d) and could therefore be a�ected by new physics.

New decay channels would, however, also increase �Bd and potentially conict with the
precisely measured semileptonic branching ratio. A conservative estimate is j�d12j=�Bd <
10%. Hence for both the B0

s and B0
d system an expansion in �12=M12 and ��=�m is a

good approximation, and we easily �nd

�m = 2 jM12j
"
1 +O

 ���� �12M12

����2
!#

; (1.64a)

�� = 2 j�12j cos�
"
1 +O

 ���� �12M12

����2
!#

: (1.64b)

We also need an approximate expression for q=p in (1.61). It is convenient to de�ne a small
parameter

a = Im
�12
M12

=

���� �12M12

���� sin� ; (1.65)

because occasionally we need to keep terms of order a. Then q=p becomes

q

p
= �e�i�M

�
1� a

2

�
+O

 ���� �12M12

����2
!
; (1.66)
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where �M is the phase of M12,
M12 = jM12j ei�M : (1.67)

Note that (1.66) and the normalization condition jpj2 + jqj2 = 1 imply

jpj = 1p
2

�
1 +

a

4

�
+O

 ���� �12M12

����2
!
; jqj = 1p

2

�
1� a

4

�
+O

 ���� �12M12

����2
!
: (1.68)

We are now prepared to exhibit the time-dependent decay rate �(B0(t) ! f) of an
initially tagged B0 into some �nal state f . It is de�ned as

�(B0(t)! f) =
1

NB

dN(B0(t)! f)

dt
; (1.69)

where dN(B0(t)! f) denotes the number of decays of a B meson tagged as a B0 at t = 0
into the �nal state f occurring within the time interval between t and t+dt. NB is the total
number of B0's produced at time t = 0. An analogous de�nition holds for �(B0(t) ! f).
One has

�(B0(t)! f) = Nf

���hf jB0(t)i
���2 ; �(B0(t)! f) = Nf

���hf jB0(t)i
���2 : (1.70)

Here Nf is a time-independent normalization factor. To calculate �(B0(t) ! f) we intro-
duce the two decay amplitudes

Af = hf jB0i ; Af = hf jB0i ; (1.71)

and the quantity

�f =
q

p

Af
Af

' �e�i�M Af
Af

�
1� a

2

�
: (1.72)

We will see in the following sections that �f plays the pivotal role in CP asymmetries and
other observables in B mixing. Finally with (1.58), (1.60) and jp=qj2 = (1 + a) we �nd the
desired formulae for the decay rates:

�(B0(t)! f) = Nf jAf j2 e��t
(
1 + j�f j2

2
cosh

�� t

2
+
1� j�f j2

2
cos(�mt)

�Re�f sinh �� t
2

� Im�f sin (�mt)

)
; (1.73)

�(B0(t)! f) = Nf jAf j2 (1 + a) e��t
(
1 + j�f j2

2
cosh

�� t

2
� 1� j�f j2

2
cos(�mt)

�Re�f sinh �� t
2

+ Im�f sin(�mt)

)
: (1.74)

Next we consider the decay into f , which denotes the CP conjugate state to f ,

jfi = CP jfi : (1.75)
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For example, for f = D�
s �

+ the CP conjugate state is f = D+
s �

�. The decay rate into f
can be obtained from (1.73) and (1.74) by simply replacing f with f . Yet jAf j and jAf j
are unrelated, unless f is a CP eigenstate, ful�lling jfi = �jfi. On the other hand the CP
transformation relates jAf j to jAf j, so it is more useful to factor out jAf j,

�(B0(t)! f) = Nf

���Af ���2 e��t (1� a)

(
1 + j�f j�2

2
cosh

�� t

2
�
1� j�f j�2

2
cos(�mt)

�Re 1

�f
sinh

�� t

2
+ Im

1

�f
sin(�mt)

)
; (1.76)

�(B0(t)! f) = Nf

���Af ���2 e��t
(
1 + j�f j�2

2
cosh

�� t

2
+
1� j�f j�2

2
cos(�mt)

�Re 1

�f
sinh

�� t

2
� Im

1

�f
sin(�mt)

)
: (1.77)

Here we set Nf = Nf , because these normalization factors arise from kinematics. In
Eqs. (1.73){(1.77) we consistently keep terms of order a, which appear explicitly in the
prefactor in (1.74), (1.76) and are implicit in �f through (1.72).7

We now apply the derived formalism to the decay rate into a avor-speci�c �nal state f
meaning that a B0 can decay into f , while B0 cannot. Examples are f = D�

s �
+ (from B0

s )
and f = X`+�`. In such decays Af = Af = 0 by de�nition and, hence, �f = 1=�f = 0.
Therefore,

�(B0(t)! f) = Nf jAf j2 e��t 1
2

�
cosh

�� t

2
+ cos(�mt)

�
for Af = 0 ; (1.78)

�(B0(t)! f) = Nf

���Af ���2 (1� a) e��t
1

2

�
cosh

�� t

2
� cos(�mt)

�
for Af = 0 : (1.79)

Flavor-speci�c decays can be used to measure �m via the asymmetry in decays from mixed
and unmixed Bs:

A0(t) =
�(B0(t)! f)� �(B0(t)! f)

�(B0(t)! f) + �(B0(t)! f)
: (1.80)

The amplitudes Af and Af are related to each other by CP conjugation. If there is no CP

violation in the decay amplitude (i.e., no direct CP violation), jAf j and jAf j are equal. This
is the case for decays like Bs ! D�

s �
+ and B ! X`+�` conventionally used to measure

�m. Then the mixing asymmetry in (1.80) reads

A0(t) =
cos(�mt)

cosh(�� t=2)
+
a

2

"
1� cos2(�mt)

cosh2(�� t=2)

#
; (1.81)

where we have allowed for a non-zero width di�erence.

7We have omitted terms of order j�12=M12j
2 in Eqs. (1.72){(1.77) and will do this throughout the report.

In most applications one can set a to zero and often also �� can be neglected, so that the expressions in
Eqs. (1.73){(1.77) simplify considerably.

Report of the B Physics at the Tevatron Workshop



1.3. GENERAL FORMALISM FOR MIXING AND CP VIOLATION 23

1.3.3 Time evolution of untagged B0 mesons

Since B0's and B0's are produced in equal numbers at the Tevatron, the untagged decay

rate for the decay
( )

B ! f reads

�[f; t] = �(B0(t)! f) + �(B0(t)! f) (1.82)

= Nf jAf j2
�
1 + j�f j2

�
e��t

�
cosh

�� t

2
+ sinh

��t

2
A��

�
+O(a)

with

A�� = � 2Re �f

1 + j�f j2
: (1.83)

From this equation one realizes that untagged samples are interesting for the determination
of ��. The �t of an untagged decay distribution to (1.82) involves the overall normalization
factor Nf jAf j2 (1+ j�f j2). From (1.69) one realizes that by integrating �[f; t] over all times
one obtains the branching ratio for the decay of an untagged B0 into the �nal state f :

B(( )

B ! f ) =
1

2

Z 1

0
dt�[f; t] =

Nf

2
jAf j2 �

�
1 + j�f j2

����Re�f
�2 � (��=2)2

+O(a)

=
Nf

2
jAf j2

�
1 + j�f j2

� 1
�

"
1 +

��

2�
A�� +O

 
(��)2

�2

!#
: (1.84)

Relation (1.84) allows to eliminate Nf jAf j2 [1 + j�f j2] from (1.82), if the branching ratio

is known. If both B (( )

B ! f) and �� are known, a one-parameter �t to the measured
untagged time evolution (1.82) allows to determine A��, which is of key interest for CP
studies.

Finally we write down a more intuitive expression for �[f; t]. From (1.70) and (1.57)
one immediately �nds

�[f; t] = Nf

h
e��Lt jhf jBLij2 + e��H t jhf jBHij2

i
+O(a) : (1.85)

With (1.54) one recovers (1.82) from (1.85). Now (1.85) nicely shows that the decay of the
untagged sample into some �nal state f is governed by two exponentials. If Bs mixing is
correctly described by the Standard Model, the mass eigenstates jBLi and jBHi are to a
high precision also CP eigenstates and (1.85) proves useful for the description of decays
into CP eigenstates.

1.3.4 Time-dependent and time-integrated CP asymmetries

The CP asymmetry for the decay of a charged B into the �nal state f reads

af =
�(B� ! f)� �(B+ ! f)

�(B� ! f) + �(B+ ! f)
with jfi = CP jfi: (1.86)
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De�ning
Af = hf jB+i and Af = hf jB�i (1.87)

in analogy to (1.71) one �nds

af = �
1�

���Af=Af ���2
1 +

���Af=Af ���2 : (1.88)

Since charged B mesons cannot mix, a non-zero af can only occur through CP violation
in the j�Bj=1 matrix elements Af and Af . This is called direct CP violation and stems

from jAf j 6= jAf j.
Next we consider the decay of a neutral B meson into a CP eigenstate f = fCP = �ff .

Here �f = �1 is the CP quantum number of f . An example for this situation is the decay
B0
s ! D+

s D
�
s , where �f = +1. We de�ne the time-dependent CP asymmetry as

af (t) =
�(B0(t)! f)� �(B0(t)! f)

�(B0(t)! f) + �(B0(t)! f)
: (1.89)

Using (1.73) and (1.74) one �nds

af (t) = � Adir
CP cos(�mt) +Amix

CP sin(�mt)

cosh(�� t=2) +A�� sinh(�� t=2)
+O(a) ; (1.90)

where A�� is de�ned in (1.83), and the direct and mixing-induced (or interference type)
CP asymmetries are

Adir
CP =

1� j�f j2
1 + j�f j2

; Amix
CP = � 2 Im�f

1 + j�f j2
; (1.91)

Amix
CP stems from the interference of the decay amplitudes of the unmixed and the mixed

B, i.e., of B0 ! f and B0 ! f . It is discussed in more detail in Sec. 1.4.1. Note that the
quantities in (1.91) and (1.83) are not independent, jAdir

CP j2 + jAmix
CP j2 + jA��j2 = 1.

The time integrated asymmetry reads8

aintf =

R1
0 dt

h
�(B0(t)! f)� �(B0(t)! f)

i
R1
0 dt

h
�(B0(t)! f) + �(B0(t)! f)

i = �1 + y2

1 + x2
Adir
CP +Amix

CP x

1 +A�� y
: (1.92)

Here the quantities x and y are de�ned as

x =
�m

�
; y =

��

2�
: (1.93)

Thus, even without following the time evolution, a measurement of aintf puts constraints on
�m and ��.

8Our sign conventions for the CP asymmetries in (1.86) and (1.89) are opposite to those in [8]. Our

de�nitions of Adir
CP , A

mix
CP and A�� are the same as in [8], taking into account that the quantity �

(q)
f of [8]

equals ��f .
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1.3.5 Phase conventions

In Sec. 1.3.1 we learned that there is no unique way to de�ne the CP transformation,
because it involves an arbitrary phase factor �CP � �C�P (see Table 1.1 and Eq. (1.44)).
This arbitrariness stems from the fact that phases of quark �elds are unobservable and phase
rede�nitions as in (1.45) transform the Lagrangian into a physically equivalent one. This
feature implies that the phases of the avor-changing couplings in our Lagrangian are not
�xed and the phase rotation (1.45) transforms one phase convention for these couplings into
another one. Of course, physical observables are independent of these phase conventions.
Hence it is worth noting which of the quantities de�ned in the previous sections are invariant,
when �CP or the phases of the quark �elds are changed. It is also important to identify
the quantities that do depend on phase conventions to avoid mistakes when combining
convention dependent quantities into an invariant observable.

The phases of

M12 ; �12 ;
q

p
; and

Af
Af

: (1.94)

depend on the phase convention of the CP transformation or the phase convention of the
CP violating couplings. In particular, the phase �M of the mixing amplitude M12 (de�ned
in (1.67)) is convention dependent. When speaking informally, one often says that a given
process, such as B0

d !  KS , measures the phase of the j�Bj=2 amplitude, i.e., �M . Such
statements refer to a speci�c phase convention, in which the decay amplitude of the process
has a vanishing (or negligible) phase. The following quantities are independent of phase
conventions: ����qp

���� ;
�����AfAf

����� ; a ; � ; �m; �� ; and �f : (1.95)

The only complex quantity here is �f . Its phase is a physical observable.

We have shown that the arbitrary phases accompanying the CP transformation stem
from the freedom to rephase the quark �elds, see (1.45). The corresponding phase factors
�CP in the CP transformed quark bilinears are suÆcient to parameterize this arbitrariness
and likewise appear in the CP transformations of the mesons and the quantities in (1.94).
In some discussions of this issue authors allow for phases di�erent from �CP accompanying
the CP transformation (1.46) of the meson states. This is simply equivalent to using our
transformation (1.46) followed by a multiplication of jB0

di and jB0
di with extra phase factors

(unrelated to CP ), which do not a�ect observables. This would further introduce an extra
inconvenient phase into (1.47). The quantities in (1.95) are still invariant under such an
extra rephasing and no new information is gained from this generalization. Unless stated
otherwise, we will use the phase convention �CP = 1, i.e.,

CP jB0(P �)i = �jB0(P�)i ; CP jB0(P �)i = �jB0(P�)i : (1.96)

For the phases of the CKM elements we use the convention of the Particle Data Group,
(1.33).
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1.4 Aspects of CP Violation

1.4.1 The three types of CP violation

As discussed in Sec. 1.3.5, there are three phase convention independent physical CP vio-
lating observables ����qp

���� ;
�����AfAf

����� ; �f =
q

p

Af
Af

: (1.97)

If any one of these quantities is not equal to 1 (or �1 for �f ), then CP is violated in the
particular decay. In fact, there are decays where only one of these types of CP violations
occur (to a very good approximation).

CP violation in mixing (jq=pj 6= 1)

It follows from Eq. (1.61c) that ����qp
����2 = ����2M�

12 � i��12
2M12 � i�12

���� : (1.98)

If CP were conserved, then the relative phase between M12 and �12 would vanish, and so
jq=pj = 1. If jq=pj 6= 1, then CP is violated. This is called CP violation in mixing, because
it results from the mass eigenstates being di�erent from the CP eigenstates. It follows from
Eq. (1.54) that hBH jBLi = jpj2 � jqj2, and so the two physical states are orthogonal if and
only if CP is conserved in j�Bj = 2 amplitudes.

The simplest example of this type of CP violation is the neutral meson semileptonic
decay asymmetry to \wrong sign" leptons

asl(t) =
�(B0(t)! `+�X)� �(B0(t)! `���X)

�(B0(t)! `+�X) + �(B0(t)! `���X)

=
jp=qj2 � jq=pj2
jp=qj2 + jq=pj2 =

1� jq=pj4
1 + jq=pj4 = a+O(a2) : (1.99)

The second line follows from Eq. (1.58). In B meson decay such an asymmetry is expected to
be O(10�2). The calculation of jq=pj�1 involves Im (�12=M12), which su�ers from hadronic
uncertainties. Thus, it would be diÆcult to relate the observation of such an asymmetry
to CKM parameters. This type of CP violation can also be observed in any decay for
which Af � Af , such as decays to avor speci�c �nal states (for which Af = 0), e.g.,

B(s) ! D�
(s)�

+. In kaon decays this asymmetry was recently measured by CPLEAR [28] in
agreement with the expectation that it should be equal to 4Re �K .

CP violation in decay (jA
f
=Af j 6= 1)

For any �nal state f , the quantity jAf=Af j is a phase convention independent physical

observable. There are two types of complex phases which can appear in Af and Af de�ned
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in Eq. (1.71). Complex parameters in the Lagrangian which enter a decay amplitude also
enter the CP conjugate amplitude but in complex conjugate form. In the Standard Model
such parameters only occur in the CKM matrix. These so-called weak phases enter Af
and Af with opposite signs. Another type of phase can arise even when the Lagrangian is
real, from absorptive parts of decay amplitudes. These correspond to on-shell intermediate
states rescattering into the desired �nal state. Such rescattering is usually dominated by
strong interactions, and give rise to CP conserving strong phases, which enter Af and Af

with the same signs. Thus one can write Af and Af as

Af =
X
k

Ak e
i(Æk+�k) ; Af =

X
k

Ak e
i(Æk��k) ; (1.100)

where k label the separate contributions to the amplitudes, Ak are the magnitudes of each
term, Æk are the strong phases, and �k are the weak phases. The individual phases Æk and
�k are convention dependent, but the phase di�erences between di�erent terms, Æi� Æj and
�i � �j , are physical.

Clearly, if jAf=Af j 6= 1 then CP is violated. This is called CP violation in decay,
or direct CP violation. It occurs due to interference between various terms in the decay
amplitude, and requires that at least two terms di�er both in their strong and in their weak
phases. The simplest example of this is direct CP violation in charged B decays

�(B� ! f)� �(B+ ! f)

�(B� ! f) + �(B+ ! f)
= �1� jAf=Af j

2

1 + jAf=Af j2
: (1.101)

To extract the interesting weak phases from such CP violating observables, one needs to
know the amplitudes Ak and their strong phases Æk. The problem is that theorists do not
know how to compute these from �rst principles, and most estimates are unreliable. The
only experimental observation of direct CP violation so far is Re �0K in kaon decays.

This type of CP violation can also occur in neutral B decays in conjunction with the
others. In such cases direct CP violation is rarely bene�cial, and is typically a source of
hadronic uncertainties that are hard to control.

CP violation in the interference between decay and mixing (�f 6= �1)

Another type of CP violation is possible in neutral B decay into a CP eigenstate �nal state,
fCP . If CP is conserved, then not only jq=pj = 1 and jAf=Af j = 1, but the relative phase
between q=p and Af=Af also vanishes. In this case it is convenient to rewrite

�fCP =
q

p

AfCP
AfCP

= �fCP
q

p

AfCP
AfCP

; (1.102)

where �fCP = �1 is the CP eigenvalue of fCP . This form of �fCP is useful for calculations,
because AfCP and AfCP

are related by CP as discussed in the previous subsection. If
�fCP 6= �1 then CP is violated. This is called CP violation in the interference between
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decays with and without mixing, because it results from the CP violating interference
between B0 ! fCP and B0 ! B0 ! fCP .

As derived in Eq. (1.90), the time dependent asymmetry is

af (t) =
�(B0(t)! f)� �(B0(t)! f)

�(B0(t)! f) + �(B0(t)! f)

= � (1� j�f j2) cos(�mt)� 2 Im�f sin(�mt)

(1 + j�f j2) cosh(�� t=2) � 2Re �f sinh(�� t=2)
+O(a) : (1.103)

This asymmetry is non-zero if any type of CP violation occurs. In particular, it is possible
that Im�f 6= 0, but j�f j = 1 to a good approximation, because jq=pj ' 1 and jAf=Af j ' 1.
In both the Bd and Bs systems jq=pj � 1 <� O(10�2). Furthermore, if only one amplitude
contributes to a decay, then jAf=Af j = 1 automatically. These modes are \clean", because
in such cases Af drops out and

af (t) =
Im�f sin(�mt)

cosh(�� t=2) �Re �f sinh(�� t=2)
; (1.104)

measures Im�f , which is given by a weak phase. In addition, if �� can be neglected then
af (t) further simpli�es to af (t) = Im�f sin(�mt).

The best known example of this type of CP violation (and also the one where j�f j = 1
holds to a very good accuracy) is the asymmetry in B !  KS , where  denotes any
charmonium state. The decay is dominated by the tree level b! c�cs transition and its CP
conjugate. In the phase convention (1.96) one �nds

A KS

A KS

=

�
VcbV

�
cs

V �
cbVcs

��
VcsV

�
cd

V �
csVcd

�
: (1.105)

The overall plus sign arises from (1.96) and because  KS is CP odd, � KS
= �1, and the

last factor is (q=p)� in K0�K0
mixing. This is crucial, because in the absence of K0�K0

mixing there could be no interference between B0 !  K
0
and B0 !  K0. There are also

penguin contributions to this decay, which have di�erent weak and strong phases. These are
discussed in detail in Chapter 6, where they are shown to give rise to hadronic uncertainties
suppressed by �2. Then one �nds

� KS
= �

�
V �
tbVtd
VtbV

�
td

��
VcbV

�
cs

V �
cbVcs

��
VcsV

�
cd

V �
csVcd

�
= �e�2i� ; (1.106)

where the �rst factor is the Standard Model value of q=p in Bd mixing. Thus, a KS
(t)

measures Im� KS
= sin 2� cleanly.

Of signi�cant interest are some �nal states which are not pure CP eigenstates, but have
CP self conjugate particle content and can be decomposed in CP even and odd partial
waves. In some cases an angular analysis can separate the various components, and may
provide theoretically clean information. An example is Bs !  � discussed in Chapters 6
and 8. There are many cases when CP violation in decay occurs in addition to CP violation
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in the interference between mixing and decay. Then the asymmetry in Eq. (1.103) depends
on the ratio of di�erent decay amplitudes and their strong phases, which introduce hadronic
uncertainties. In some cases it is possible to remove (or reduce) these by measuring several
rates related by isospin symmetry. An example is Bd ! � � (or � �) discussed in Chapter 6.

1.4.2 Decays to non-CP eigenstates

In certain decays to �nal states which are not CP eigenstates, it is still possible to extract
weak phases model independently from the interference between mixing and decay. This
occurs if both B0 and B0 can decay into a particular �nal state and its CP conjugate, but
there is only one contribution to each of these decay amplitudes. In this case no assumptions
about hadronic physics are needed, even though jAf=Af j 6= 1 and jAf=Af j 6= 1.

The most important example is Bs ! D�
s K

�, which allows a model independent deter-
mination of  [29]. Both B0

s and B
0
s can decay to D+

s K
� and D�

s K
+, but the only decay

processes are the tree level b! c�us and b! u�cs transitions, and their CP conjugates. One
can easily see that

AD+
s K�

AD+
s K�

=
A1

A2

�
VcbV

�
us

V �
ubVcs

�
;

AD�s K+

AD�s K+

=
A2

A1

�
VubV

�
cs

V �
cbVus

�
; (1.107)

where the ratio of amplitudes, A1=A2, includes the strong phases, and is an unknown
complex number of order unity. It is important for the utility of this method that jVcbVusj
and jVubVcsj are comparable in magnitude, since both are of order �3 in the Wolfenstein
parameterization. Eqs. (1.73) and (1.74) show that measuring the four time dependent
decay rates determine both �D+

s K� and �D�s K+. The unknown A1=A2 ratio drops out from
their product

�D+
s K� �D�s K+ =

�
V �
tbVts
VtbV

�
ts

�2�VcbV �
us

V �
ubVcs

��
VubV

�
cs

V �
cbVus

�
= e�2i(�2�s��K) : (1.108)

The �rst factor is the Standard Model value of q=p in Bs mixing. The angles �s and �K
occur in \squashed" unitarity triangles; �s de�ned in Eq. (1.41) is of order �2 and �K =
arg(�VcsV �

cd=VusV
�
ud) is of order �

4. Thus, this mode can provide a precise determination
of  (or  � 2�s); the determination of �s is discussed in Chapter 6, e.g., from Bs !  �(0).

In exact analogy to the above, the Bd ! D(�)��� decays can determine  + 2�, since
�D+�� �D��+ = exp [�2i( + 2�)]. In this case, however, the two decay amplitudes di�er
in magnitude by order �2, and therefore the CP asymmetries are expected to be much
smaller, at the percent level.

1.4.3 �F = 2 vs. �F = 1 CP violation

At low energies avor-changing transitions are described by e�ective Hamiltonians, which
are discussed in detail in Sec. 1.5.1. Decays are mediated by the �F = 1 Hamiltonian
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H j�F j=1, whereas mixing is induced by the �F = 2 Hamiltonian. The changing avor is
F = B for B decays and F = S for K decays. In kaon physics it is customary to distinguish
�F = 1 CP violation, which is often called direct CP violation, from �F = 2 CP violation,
called indirect CP violation. Here we compare this classi�cation with the three types of
CP violation in B decays discussed in Sec. 1.4.1.

If we can �nd phase transformations of the quark �elds in (1.45) which leave the Hamil-
tonian invariant, CP H j�F j=1(CP )�1 = H j�F j=1, then we conclude that the j�F j = 1
interaction conserves CP . Analogously we could de�ne CP violation and CP conservation
in H j�F j=2, but a B physics experiment probes only one matrix element of H j�F j=2, namely
M12. One can always �nd a phase transformation which rendersM12 real and thereby shifts
the CP violation from H j�F j=2 completely into H j�F j=1. The converse is not true, since
one can explore the di�erent couplings in H j�F j=1 by studying di�erent decay modes. This
leaves three scenarios to be experimentally distinguished:

i) With rephasing of the quark �elds one can achieve CP H(CP )�1 = H for both
H j�F j=2 and H j�F j=1: The theory conserves CP .

ii) One can rephase the quark �elds such that CP H j�F j=1(CP )�1 = H j�F j=1, but for
this phase transformation CP H j�F j=2(CP )�1 6= H j�F j=2. This scenario is called
superweak [30].

iii) CP H j�F j=1(CP )�1 6= H j�F j=1 for any phase convention of the quark �elds. This
scenario is realized in the CKM mechanism of the Standard Model.

Historically, after the discovery of CP violation in 1964 [31], it was of prime interest to
distinguish the second from the third scenario in kaon physics. The recent establishment of
�0K 6= 0 has shown that possibility iii) is realized in kaon physics.

It is diÆcult (but possible) to build a viable theory with �0K 6= 0 in which CP violation
in the B system is of the superweak type. Still we can play the rules of the kaon game
and ask, what must be measured to rule out the superweak scenario. Clearly, CP violation
in decay unambiguously proves j�F j = 1 CP violation. CP violation in mixing purely
measures CP violation in the j�F j = 2 transition. It measures the relative phase between
M12 and the decay matrix �12. �12 arises at second order in the j�F j = 1 interaction, fromP
f A

�
fAf , where Af and Af are the j�F j = 1 decay amplitudes introduced in (1.87). M12

receives contributions at �rst order in H j�F j=2 and at second order in H j�F j=1. Interference
type CP violation measures the di�erence between the mixing phase �M = argM12 and
twice the weak phase �f of some decay amplitude Af . Both types of CP violations are
therefore sensitive to relative phases between H j�F j=2 and H j�F j=1. Yet the measurement
of a single CP violating observable of either type is not suÆcient to rule out the superweak
scenario, because we can always rephase �12 or Af to be real. However, the measurement
of interference type CP violation in two di�erent decay modes with di�erent results would
prove that two weak phases in H j�F j=1 are di�erent. Since �f1��f2 is a rephasing invariant
observable, no �eld transformation in (1.45) can render H j�F j=1 real and j�F j = 1 CP
violation is established. Hence for example the measurement of di�erent CP asymmetries in
Bd ! J= KS and Bd ! �+�� is suÆcient to rule out the superweak scenario. Interestingly,
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�0K contains both of the discussed types of �S = 1 CP violation: CP violation in decay and
the di�erence of two interference type CP violating phases. Since in both K- and B physics
the dominant decay modes have the same weak phases, essentially no new information
is gained by comparing CP violation in mixing with interference type CP violation in a
dominant decay mode. We will see this in Sec. 1.6 when comparing �K with the semileptonic
CP asymmetry in KL decays.

1.5 Theoretical Tools

This section provides a brief review of the tools used to derive theoretical predictions for B
mixing and decays. The theory of b production and fragmentation is discussed in Chapter 9.

The principal aim of B physics is to learn about the short distance dynamics of nature.
Short distance physics couples to b quarks, while experiments detect b-avored hadrons.
One therefore needs to connect the properties of these hadrons in terms of the underlying b
quark dynamics. Except for a few special cases, this requires an understanding of the long
distance, nonperturbative properties of QCD. It is then useful to separate long distance
physics from short distance using an operator product expansion (OPE) or an e�ective �eld
theory. The basic idea is that interactions at higher scales give rise to local operators at
lower scales. This allows us to think about the short distance phenomena responsible for
the avor structure in nature independent of the complications due to hadronic physics,
which can then be attacked separately. This strategy can lead to very practical results: the
hadronic part of an interesting process may be related by exact or approximate symmetries
to the hadronic part of a less interesting or more easily measured process.

In the description of B decays several short distances arise. CP and avor violation
stem from the weak scale and, probably, even shorter distances. These scales are separated
from the scale mB with an OPE, leading to an e�ective Hamiltonian for avor changing
processes. This is reviewed in Sec. 1.5.1. Furthermore, the b and (to a lesser extent)
the c quark masses are much larger than �QCD. In the limit �QCD=mQ ! 0, the bound
state dynamics simplify. Implications for exclusive processes are discussed in Sec. 1.5.2.
For inclusive decays one can apply an OPE again, the so-called heavy quark expansion,
reviewed in Sec. 1.5.3. Despite the simpli�cations, these expansions still require hadronic
matrix elements, so we briey review lattice QCD in Sec. 1.5.4.

1.5.1 E�ective Hamiltonians

To predict the decay rate of a B meson into some �nal state f , one must calculate the
transition amplitudeM for B ! f . In general there are many contributions to M, each of
which is, at the quark level, pictorially represented by Feynman diagrams such as those in
Fig. 1.3.

Quark diagrams are a poor description for the decay amplitude of a B meson. The
quarks feel the strong interaction, whose nature changes drastically over the distances at
which it is probed: At short distances much smaller than 1=�QCD the strong interaction can
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W

Figure 1.3: Standard Model W exchange diagram and penguin diagram with
internal top quark for the decay b! ccd.

be described perturbatively by dressing the lowest order diagrams in Fig. 1.3 with gluons.
When traveling over a distance of order 1=�QCD, however, quarks and gluons hadronize
and QCD becomes nonperturbative. Therefore the physics from di�erent length scales, or,
equivalently, from di�erent energy scales must be treated di�erently. One theoretical tool
for this is the operator product expansion (OPE) [32]. Schematically the decay amplitude
M is expressed as

M = �4GFp
2
VCKM

X
j

Cj(�) hf jOj(�)jBi
�
1 +O

�
m2
b

M2
W

��
; (1.109)

where � is a renormalization scale. Physics from distances shorter than ��1 is contained
in the Wilson coeÆcients Cj , and physics from distances longer than ��1 is accounted for
by the hadronic matrix elements hf jOj jBi of the local operators Oj . In principle, there
are in�nitely many terms in the OPE, but higher dimension operators yield contributions
suppressed by powers of m2

b=m
2
W . From a practical point of view, therefore, the sum in

(1.109) ranges over operators of dimension �ve and six.

All dependence on heavy masses M � � such as mt, MW or the masses of new undis-
covered heavy particles is contained in Cj. By convention one factors out 4GF =

p
2 and

the CKM factors, which are denoted by VCKM in (1.109). On the other hand, the matrix
element hf jOj jBi of the B ! f transition contains information from scales, such as �QCD,
that are below �. Therefore, they can only be evaluated using nonperturbative methods
such as lattice calculations (cf., Sec. 1.5.4), QCD sum rules, or by using related processes
to obtain them from experiment.

An important feature of the OPE in (1.109) is the universality of the coeÆcients Cj ;
they are independent of the external states, i.e., their numerical value is the same for all
�nal states f in (1.109). Therefore one can view the Cj 's as e�ective coupling constants
and the Oj's as the corresponding interaction vertices. Thus one can introduce the e�ective
Hamiltonian

H j�Bj=1 =
4GFp

2
VCKM

X
j

Cj Oj + h:c: (1.110)

An amplitude calculated from H j�Bj=1 de�ned at a scale of order mb, reproduces the
corresponding Standard Model result up to corrections of order m2

b=M
2
W as indicated in
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O8

b d

O

Figure 1.4: E�ective operators of (1.112). There are two types of fermion-gluon
couplings associated with the chromomagnetic operator O8.

(1.109). Hard QCD e�ects can be included perturbatively in the Wilson coeÆcients, i.e.,
by calculating Feynman diagrams with quarks and gluons.

The set of operators Oj needed in (1.110) depends on the avor structure of the physical
process under consideration. Pictorially the operators are obtained by contracting the lines
corresponding to heavy particles in the Feynman diagrams to a point. The tree level diagram
involving the W boson in Fig. 1.3 generates the operator Oc2 shown in Fig. 1.4. In the
Standard Model only two operators occur for b! cud transitions,

O1 = �b�L�c
�
L �u

�
L

�d�L ; O2 = �b�L�c
�
L �u

�
L

�d�L ; (1.111)

where � and � are color indices. These arise from W exchange shown in Fig. 1.3, and QCD
corrections to it. Operators and Wilson coeÆcients at di�erent scales �1 and �2 are related
by a renormalization group transformation. C1;2(�1) is not just a function of C1;2(�2), but
a linear combination of both C1(�2) and C2(�2). This feature is called operator mixing. It
is convenient to introduce the linear combinations O� = (O2 � O1)=2, which do not mix
with each other. Their coeÆcients can be more easily calculated and are related to C1 and
C2 by C� = C2 � C1.

The Hamiltonian for �B = 1 and �C = �S = 0 transitions consists of more operators,
because it must also accommodate for the so-called penguin diagram with an internal top
quark, shown in Fig. 1.3. The corresponding operator basis reads

Oc1 =
�d�L�c

�
L �c

�
L

�b�L ; Ou1 = �d�L�u
�
L �u

�
L

�b�L ;

Oc2 =
�d�L�c

�
L �c

�
L

�b�L ; Ou2 = �d�L�u
�
L �u

�
L

�b�L ;

O3 =
X

q=u;d;s;c;b

�d�L�b
�
L �q

�
L

�q�L ; O4 =
X

q=u;d;s;c;b

�d�L�b
�
L �q

�
L

�q�L ;

O5 =
X

q=u;d;s;c;b

�d�L�b
�
L �q

�
R

�q�R ; O6 =
X

q=u;d;s;c;b

�d�L�b
�
L �q

�
R

�q�R ;

O8 = � g

16�2
mb

�dL�
��Ga��T

abR :

(1.112)

These operators are also depicted in Fig. 1.4. In O8, G
a
�� is the chromomagnetic �eld

strength tensor. The operators are grouped into classes, based on their origin: O1 and O2

are called current-current operators, O3 through O6 are called four-quark penguin operators,
and O8 is called the chromomagnetic penguin operator.9

9In the literature one also �nds O7 and O8 with the opposite signs. In QCD and QED the sign of the
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The operators in (1.112) arise from the lowest order in the electroweak interaction, i.e.,
diagrams involving a single W bosons plus QCD corrections to it. In some cases, especially
when isospin breaking plays a role, one also needs to consider penguin diagrams which
are of higher order in the electroweak �ne structure constant �ew. They give rise to the
electroweak penguin operators:

O7 = � e

16�2
mb

�d�L �
��F�� b

�
R ;

Oew
7 =

3

2

X
q=u;d;s;c;b

eq �d
�
L�b

�
L �q

�
R

�q�R ; Oew
8 =

3

2

X
q=u;d;s;c;b

eq �d
�
L�b

�
L �q

�
R

�q�R ;

Oew
9 =

3

2

X
q=u;d;s;c;b

eq �d
�
L�b

�
L �q

�
L

�q�L ; Oew
10 =

3

2

X
q=u;d;s;c;b

eq �d
�
L�b

�
L �q

�
L

�q�L :

(1.113)

Here F �� is the electromagnetic �eld strength tensor, and eq denotes the charge of quark
q. The magnetic (penguin) operator O7 is also of key importance for the radiative decay
b ! d. Eqs. (1.112) and (1.113) reveal that there is no consensus yet on how to number
the operators consecutively.

For semileptonic decays the following additional operators occur

O9 =
e2

16�2
�dL � bL �̀

� ` ; O10 =
e2

16�2
�dL � bL �̀

�5 ` ;

O11 =
e2

32�2 sin2 �W
�dL � bL ��L 

� �L ;

(1.114)

and the counterparts of these with �dL replaced by �sL.

Hence the �B = 1 and �C = �S = 0 Hamiltonian reads:

H j�Bj=1 =
4GFp

2

� 2X
j=1

Cj
�
�cO

c
j + �uO

u
j

�
� �t

11X
j=3

Cj Oj � �t

10X
j=7

Cew
j Oj

�
+ h:c: ; (1.115)

where
�q = V �

qbVqd : (1.116)

Note that �u + �c + �t = 0 by unitarity of the CKM matrix. The corresponding operator
basis for b ! s transitions is obtained by simply exchanging d with s in (1.112), (1.113)
and (1.114) and changing �i accordingly.

The operators introduced above are suÆcient to describe nonleptonic transitions in the
Standard Model to order GF . In extensions of the Standard Model, on the other hand,
the short distance structure can be very di�erent. Additional operators with new Dirac
structures, whose standard Wilson coeÆcients vanish, could enter the e�ective Hamiltonian.
A list of these operators, including their RG evolution, can be found in [33].

In general the QCD corrections to the transition amplitude M(B ! f) contain large
logarithms such as ln(mb=MW ) which need to be resummed to all orders in �s. The OPE

gauge coupling is convention dependent, and (1.112) is consistent with the values for C8 in Table 1.3, if the
Feynman rule for the quark-gluon coupling is chosen as +ig.

Report of the B Physics at the Tevatron Workshop



1.5. THEORETICAL TOOLS 35

splits these logarithms as ln(mb=MW ) = ln(�=MW )� ln(�=mb). The former term resides in
the Wilson coeÆcients, the latter logarithm is contained in the matrix element. Such large
logarithms can be summed to all orders by solving renormalization group (RG) equations
for the Cj's. These RG-improved perturbation series are well-behaved. The minimal way
to include QCD corrections is the leading logarithmic approximation. The corresponding
leading order (LO) Wilson coeÆcients comprise [�s ln(mb=MW )]n to all orders n = 0; 1; 2; : : :
in perturbation theory. This approximation has certain conceptual de�cits and is too crude
for the precision of the experiments and the accuracy of present day lattice calculations of the
hadronic matrix elements. The next-to-leading order (NLO) results for the Cj's comprises
in addition terms of order �s [�s ln(mb=MW )]n; n = 0; 1; 2; : : :. The Wilson coeÆcients
depend on the unphysical scale � at which the OPE is performed. Starting from the NLO
the Cj 's further depend on the renormalization scheme, which is related to the way one
treats divergent loops in Feynman diagrams. In an exact calculation both the scale and
scheme dependence cancels between the coeÆcients and the matrix elements, but in practice
the calculation of matrix elements with the correct scale and scheme dependence can be a
non-trivial task. The appearance of the scale and scheme dependence in the coeÆcients is
inevitable. The OPE enforces the short distance physics involving heavy masses like MW

and mt to belong to the Cj's, while the long distance physics is contained in the matrix
elements. But a constant number can be attributed to either of them. Switching from one
scheme to another or changing the scale � just shu�es constant terms between the Wilson
coeÆcients and the matrix elements. There is no unique de�nition of \scheme independent"
Wilson coeÆcients.

The numerical values for the renormalization group improved Wilson coeÆcients can
be found in Table 1.3. The NLO coeÆcients are listed for two popular schemes, the naive
dimensional regularization (NDR) scheme and the 't Hooft-Veltman (HV) scheme. These
results have been independently obtained by the Rome and Munich groups [34]. The situ-
ation with C8 is special: To obtain the LO values for C1�6 in Table 1.3 one must calculate
one-loop diagrams. The calculation of C8, however, already involves two-loop diagrams in
the leading order. This implies that even the LO expression for C8 is scheme dependent.
The tabulated value corresponds to the commonly used \e�ective" coeÆcient C8 introduced
in [36], which is de�ned in a scheme independent way. To know the NLO value for C8 one
must calculate three-loop diagrams. The operator basis in (1.112) is badly suited for this
calculation and hence a di�erent one has been used [37]. For the basis in (1.112) the NLO
value for C8 is not known, we therefore leave the corresponding rows open. In Table 1.3
small corrections proportional to �ew have been omitted. For the Wilson coeÆcients of the
electroweak penguin operators in (1.113) and the semileptonic operators in (1.114) we refer
the reader to [35].

We can derive an e�ective Hamiltonian for the j�Bj=2 transition, which inducesB0
d�B0

d

mixing, just in the same way as discussed above for j�Bj=1. In the Standard Model only
a single operator Q arises:10

H j�Bj=2 =
G2
F

4�2
(VtbV

�
td)

2 C j�Bj=2(mt;MW ; �)Q(�) + h:c: (1.117)

10Once again in (1.117), new short distance physics can generate Wilson coeÆcients for additional opera-
tors.
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�s(MZ) scheme � (GeV) C1 C2 C3 C4 C5 C6 C8

0:112 LO 4:8 �0:229 1:097 0:010 �0:024 0:007 �0:029 �0:146
2:4 �0:325 1:149 0:015 �0:033 0:009 �0:043 �0:161
9:6 �0:155 1:062 0:007 �0:016 0:005 �0:019 �0:133

NDR 4:8 �0:160 1:066 0:011 �0:031 0:008 �0:035
2:4 �0:245 1:110 0:017 �0:043 0:009 �0:052
9:6 �0:093 1:036 0:008 �0:021 0:006 �0:023

HV 4:8 �0:177 0:993 0:009 �0:024 0:007 �0:026
2:4 �0:260 1:020 0:014 �0:033 0:010 �0:038
9:6 �0:111 0:975 0:006 �0:015 0:005 �0:017

0:118 LO 4:8 �0:249 1:108 0:011 �0:026 0:008 �0:031 �0:149
2:4 �0:361 1:169 0:017 �0:036 0:010 �0:048 �0:166
9:6 �0:167 1:067 0:007 �0:018 0:005 �0:020 �0:135

NDR 4:8 �0:174 1:073 0:013 �0:034 0:009 �0:038
2:4 �0:272 1:124 0:020 �0:047 0:010 �0:060
9:6 �0:100 1:039 0:008 �0:024 0:006 �0:025

HV 4:8 �0:192 0:993 0:010 �0:026 0:008 �0:028
2:4 �0:286 1:022 0:016 �0:036 0:011 �0:042
9:6 �0:120 0:972 0:006 �0:017 0:005 �0:018

0:124 LO 4:8 �0:272 1:120 0:012 �0:028 0:008 �0:035 �0:153
2:4 �0:403 1:194 0:019 �0:040 0:011 �0:055 �0:172
9:6 �0:180 1:073 0:008 �0:019 0:006 �0:022 �0:138

NDR 4:8 �0:190 1:082 0:014 �0:037 0:009 �0:043
2:4 �0:303 1:142 0:022 �0:054 0:011 �0:069
9:6 �0:108 1:042 0:009 �0:025 0:007 �0:028

HV 4:8 �0:208 0:993 0:011 �0:028 0:008 �0:031
2:4 �0:316 1:025 0:018 �0:040 0:012 �0:048
9:6 �0:129 0:970 0:007 �0:018 0:006 �0:019

Table 1.3: QCD Wilson coeÆcients in the leading and next-to-leading order. The
NLO running of �s has been used in both the LO and NLO coeÆcients. �s(MZ) =
0:112, 0:118, 0:124 implies �s(4:8GeV) = 0:196, 0:216, 0:238. The corresponding
values of the �ve-avor QCD scale parameter �

MS
are 159, 226 and 312 MeV. The

dependence on mt(mt), here taken as 168 GeV, is negligible. The NLO coeÆcients
are listed for the NDR and HV scheme. There are two di�erent conventions for the
HV scheme, here we use the one adopted in [34]. The HV coeÆcients tabulated
in [35] are related to our CHV

j 's by CHV
j ([35]) = [1+16=3 ��s(�)=(4�)]C

HV
j . Small

QED corrections have been omitted.
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with
Q = dL�bL dL

�bL: (1.118)

The Wilson coeÆcient is

C j�Bj=2(mt;MW ; �) =M2
W S

�
m2
t

M2
W

�
�B bB(�) : (1.119)

It contains the Inami-Lim function [38]

S(x) = x

�
1

4
+
9

4

1

1� x
� 3

2

1

(1� x)2

�
� 3

2

�
x

1� x

�3
lnx ; (1.120)

which is calculated from the box diagram in Fig. 1.2. The coeÆcients �B and bB in (1.119)
account for short distance QCD corrections. In the next-to-leading order of QCD one �nds
�B = 0:55 [39]. bB depends on the renormalization scale � = O(mb), at which the matrix
element hB0

d jQjB0
di is calculated. bB(�) equals [�s(�)]�6=23 in the LO. The �-dependence

of bB(�) cancels the �-dependence of the matrix element to the calculated order. The same
remark applies to the dependence of bB(�) on the renormalization scheme in which the
calculation is carried out. One parameterizes the hadronic matrix elements as

hB0jQ(�)jB0i = 2

3
f2Bm

2
B

bBB
bB(�)

; (1.121)

so that bBB is scale and scheme independent. The e�ective Hamiltonian for B0
s�B0

s mixing
is obtained as usual by replacing d with s in (1.117) and (1.118). The Wilson coeÆcient in
(1.119) does not depend on the light quark avor.

1.5.2 Heavy quark e�ective theory

In hadrons composed of a heavy quark and light degrees of freedom (light quarks, antiquarks,
and gluons), the binding energy, which is of order �QCD, is small compared to the heavy
quark mass mQ. In the limit mQ � �QCD, the heavy quark acts approximately as a static
color-triplet source,11 and its spin and avor do not a�ect the light degrees of freedom. This
is analogous to atomic physics, where isotopes with di�erent nuclei have nearly the same
properties. Thus, the properties of heavy-light hadrons are related by a symmetry, called
heavy quark symmetry (HQS) [40{47]. In practice, only the b and c quarks have masses
large enough for HQS to be useful.12 This results in an SU(2Nh) spin-avor symmetry,
where Nh = 1 or 2, depending on the problem at hand.

The heavy quark spin-avor symmetries are helpful for understanding many aspects
of the spectroscopy and decays of heavy hadrons from �rst principles. For example, in
the in�nite mass limit, mass splittings between b-avored hadrons can be related to those
between charmed hadrons, and many semileptonic and radiative decay form factors can

11For the same reason, heavy quark symmetries also apply to hadrons composed of two heavy and a light
quark, because the color quantum numbers of the two heavy quarks combine to an antitriplet.

12The top quark also satis�es mt � �QCD, but it decays before it hadronizes.
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be related to one another. There are corrections to the HQS limit from long distances
and from short distances. The former are suppressed by powers of �QCD=mQ. They must
be calculated by nonperturbative methods, but HQS again imposes relations among these
terms. The latter arise from the exchange of hard virtual gluons, so they can be calculated
accurately in a perturbation series in �s(mQ). The heavy quark e�ective theory (HQET)
provides a convenient framework for treating these e�ects [45{51]. In leading order the
e�ective theory reproduces the model independent predictions of HQS, and both series of
symmetry breaking corrections are developed in a systematic, consistent way.

To see how the heavy quark symmetries arise, it is instructive to look at the in�nite-
mass limit of the Feynman rules. For momentum p = mQv + k, with v2 = 1 and k � mQ,
the propagator of a heavy quark becomes

i

p=�mQ
=
i(p=+mQ)

p2 �m2
Q

=
i(mQv=+ k=+mQ)

2mQ v � k + k2
=

i

v � k
1 + v=

2
+ : : : : (1.122)

As mQ ! 1 it is independent of its mass, and in this way heavy quark avor symmetry
emerges. In a Feynman diagram, the quark-gluon vertex appears between two propagators
and, hence, for mQ !1, sandwiched between the projection operator

P+(v) =
1 + v=

2
: (1.123)

Consequently the gamma matrix at the vertex becomes

P+
�P+ = v� P+ : (1.124)

Thus, both the vertex and the propagator depend on gamma matrices only through P+.
Since P 2

+ = P+, all these factors reduce to a single one, and in this way heavy quark spin

symmetry emerges.

The construction of HQET [40] starts by removing the mass-dependent piece of the
momentum operator by a �eld rede�nition. One introduces a �eld hv(x), which annihilates
a heavy quark with velocity v [47],

hv(x) = eimQv�x P+(v)Q(x) ; (1.125)

where Q(x) denotes the quark �eld in full QCD. Here the physical interpretation of the
projection operator P+ is that hv represents just the heavy quark (rather than antiquark)
components ofQ. If p is the total momentum of the heavy quark, then the �eld hv carries the
residual momentum k = p�mQv. Inside a hadron, the residual momentum k � O(�QCD).
Since the phase factor in Eq. (1.125) e�ectively removes the mass of the heavy quark from
the states, it is the mass di�erence

�� = mH �mQ ; (1.126)

where mH is the hadron mass, that determines the x-dependence of hadronic matrix el-
ements in HQET [51]. It is also this parameter that sets the characteristic scale of the
1=mQ expansion. Because of heavy quark avor symmetry �� = mB �mb = mD �mc, and
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because of heavy quark spin symmetry �� = mB� �mb, in both cases up to O(�2QCD=mQ)

corrections. Other heavy hadrons, for example heavy-avored baryons, have a distinct \��",
but the avor symmetry implies m�b �mb = m�c �mc, up to O(�2QCD=mQ).

The HQET Lagrangian is constructed from the �eld hv. Including the leading 1=mQ

corrections, it is [45,47,48]

LHQET = �hv iv �Dhv +
1

2mQ

h
Okin + Cmag(�)Omag(�)

i
+O(1=m2

Q) ; (1.127)

where D� = @��igsTaA�a is the color SU(3) covariant derivative. The leading term respects
both the spin and avor symmetries, and reproduces the heavy quark propagator derived
above. The symmetry breaking operators appearing at order 1=mQ are

Okin = �hv (iD)
2 hv ; Omag =

gs
2
�hv ��� G

�� hv : (1.128)

Here G�� is the gluon �eld strength tensor de�ned by [iD�; iD� ] = igsG
�� . In the rest

frame of the hadron, Okin describes the kinetic energy resulting from the residual motion of
the heavy quark, whereas Omag corresponds to the chromomagnetic coupling of the heavy
quark spin to the gluon �eld. While Okin violates only the heavy quark avor symmetry,
Omag violates the spin symmetry as well.

In the operators of the electroweak Hamiltonian, the QCD �eld Q must also be replaced
with hv and a series of higher-dimension operators to describe 1=mQ e�ects. The short
distance behavior can be matched using perturbation theory. The matrix elements of the
HQET operators still cannot be calculated in perturbatively, but HQS restricts their form.
The best known example is in exclusive semileptonic b ! c corrections. In B ! D(�)`�
and �b ! �c`�, let v (v0) be the velocity of the initial (�nal) heavy-light hadron. HQS
requires that the mesonic decays are described by a set of heavy quark spin- and mass-
independent functions of the kinematic variable w = v � v0. The baryonic decay is described
by another function of w. When v = v0 the symmetry becomes larger|from SU(2)v �
SU(2)v0 to SU(4)|so there are further restrictions. One is that symmetry limit of the
form factor is completely determined by symmetry (at w = 1). Furthermore, HQS also
requires that the 1=mQ corrections to B ! D�`� and �b ! �c`� vanish for w = 1.

The utility of HQET is not limited to exclusive decays. Matrix elements of the e�ective
Lagrangian play an important role in inclusive semileptonic and radiative decays. One
de�nes

�1 =
1

2mM
hM(v)jOkin jM(v)i ;

dM �2 =
1

2mM
hM(v)jOmag jM(v)i ; (1.129)

where M denotes a B or B� meson, and dM = 3; �1 for B and B�, respectively. Strictly
speaking, both �1 and �2 depend on the renormalization scale �. For �1, however, there
is no � dependence if Okin is renormalized in the MS scheme. For �2, the � dependence is
canceled by the coeÆcient Cmag(�) in (1.127).
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HQET provides an expansion of the heavy meson masses in terms of the heavy quark
masses,

mB = mb + ��� �1 + 3�2
2mb

+ : : : ; mB� = mb + ��� �1 � �2
2mb

+ : : : : (1.130)

Consequently, the value of �2 is related to the mass splitting between the vector and the
pseudoscalar mesons,

�2 =
m2
B� �m2

B

4
+O

�
�3QCD=mb

�
; (1.131)

taking � = mb and Cmag(mb) = 1. From the measured B and B� masses one �nds �2(mb) '
0:12 GeV2. These formulae will play an important role in the description of both inclusive
and exclusive heavy meson decays in the following chapters.

It was only recognized recently that HQS also yields important simpli�cations in the
description of heavy-to-light radiative and semileptonic decays in the region of large recoil
(small q2) [52]. In the in�nite mass limit, the three form factors which parameterize the
vector and tensor current matrix elements in B ! K`+`� are related to a single function
of q2, and the seven form factors which occur in B ! K�`+`� are related to only two
functions of q2. In contrast to the predictions of HQS in the region of small recoil, in this
case it is not known yet how to formulate the subleading corrections suppressed by powers
of �QCD=mQ. Nevertheless, these relations play a very important role in Chapter 7, where
they will be discussed in detail.

1.5.3 Heavy quark expansion

In inclusive B decays, when many �nal states are summed over, certain model independent
formulae can be derived. In this section we examine how the large b quark mass, mb �
�QCD, allows one to extract reliable information about such decays. In most of the phase
space the energy release, which can be as large as O(mb), is much larger than the typical
scale of hadronic interactions. The large energy release implies a short distance, and we
can use the same tools as before|an operator product expansion [53{55] (though not the
same OPE as in Sec. 1.5.1) and HQET|to separate short and long distances. In this way,
inclusive decay rates can be described with a double series in �QCD=mb and �s(mb).

Inclusive decay widths are given by the sum over all �nal states. Schematically, the
width is given by

� �
X
X

hBjOyjXi hXjOjBi : (1.132)

where X is any �nal state. One can also limit X to Xc or Xu, i.e., to �nal states with or
without a charmed quark, respectively. From Sec. 1.5.1, we see that inclusive semileptonic
B decays are mediated by operators of the form

O` � �qL
�bL �̀L1�`L2 ; (1.133)

and nonleptonic decays are mediated by four-quark operators of the form

Oh � �qL
�bL �qL1�qL2 : (1.134)
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Although these operators are super�cially similar, we shall see that they have to be treated
di�erently, because inOh hard gluons can be exchanged among all four quark �elds. We start
by showing in detail how the OPE and HQET are used to describe inclusive semileptonic B
decays. We then explain what restrictions arise for nonleptonic decay rates and lifetimes.
Finally, we treat the width di�erence in the Bs system, which is of special interest to
Tevatron experiments.

1.5.3.1 Inclusive semileptonic B decays

In semileptonic decays, one may factorize the matrix element of the four-fermion operator

hX` ��`jO` jBi = hXj �q �PL b jBi h` ��`j �̀�PL �` j0i ; (1.135)

neglecting electroweak loop corrections. Then the decay rate can be written in the form

d2�

dy dq2
�
Z
d(q � v)L��(p`; p��)W ��(q � v; q2) ; (1.136)

where L�� is the lepton tensor and W �� is the hadron tensor. The momentum of the
decaying b quark is written as p�b = mbv

�, q� = p�` + p��� , and we have introduced the
dimensionless variable y = 2E`=mb. Since the antineutrino is not detected, its energy or,
equivalently, q � v = E` + E�� is integrated over. The lepton tensor L�� = 2(p�` p

�
�� + p�`p

�
�� �

g��p` � p�� � i"����p`�p���). The hadron tensor W �� contains all strong interaction physics
relevant for the semileptonic decay, and it can be expressed as

W �� =
X
X

(2�)3 Æ4(pB � q � pX)
hBjJ�y jXi hXjJ� jBi

2mB
; (1.137)

where J� = �q �PL b.

The optical theorem can be used to relate W �� to the discontinuity across a cut of the
forward scattering matrix element of a time ordered product

T �� = �i
Z
d4x e�iq�x

hBjTfJ�y(x)J�(0)gjBi
2mB

: (1.138)

To show that

W �� = � 1

�
ImT �� ; (1.139)

one inserts a complete set of states between the currents in the two possible time or-
derings in T �� . Using hAjJ(x)jBi = hAjJ(0)jBi ei(pA�pB)�x and the identity �(x0) =
i=(2�)

R +1
�1 d! [e�i!x

0
=(!+ i")], the d4x integration gives (in the B rest frame, so q �v = q0)

T �� =
X
Xq

hBjJ�y jXqi hXq j J� jBi
2mB (mB �EX � q0 + i")

(2�)3 Æ3(q + pX)

�
X
X�qbb

hBjJ� jX�qbbi hX�qbbjJ�y jBi
2mB (EX �mB � q0 � i")

(2�)3 Æ3(q � pX) : (1.140)
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Figure 1.5: OPE diagram for semileptonic and radiative B decays.

Re q ⋅ v

Im q ⋅ v

C

Figure 1.6: The analytic structure of T�� in the q � v plane, with q2 �xed. The
cuts corresponding to B decay (left) and to an unphysical process (right) are both
shown, together with the integration contour for computing the decay rate.

This form shows that, for �xed q2, T �� has cuts in the complex q0 plane corresponding to
physical processes. The �rst sum in Eq. (1.140) corresponds to B decay shown in Fig. 1.5,
with intermediate states containing a q quark (and arbitrary number of gluons and light
quark-antiquark pairs). It leads to a cut for q0 = q � v < (m2

B + q2 �m2
Xmin
q

)=2mB , towards

the left in Fig. 1.6. For charmed �nal states m2
Xmin
q

= m2
D and for charmless �nal states

m2
Xmin
q

= m2
�. The second sum in Eq. (1.140) corresponds to an unphysical process with

a �q and two b quarks in the intermediate state. It leads to another cut for q0 = q � v >
(m2

Xmin
�qbb

�m2
B � q2)=2mB , towards the right in Fig. 1.6. The imaginary part can be read o�

using Im (A+ i")�1 = ��Æ(A), and (1.139) follows immediately, because the kinematics of
the decay process allow only the �rst sum to contribute.

Because W �� is the discontinuity across the left cut in Fig. 1.6, the integral in (1.136)
can be replaced with a contour integral of L��T

�� . The two cuts are well separated (unless
mq ! 0 and q2 ! m2

b), so one may deform the contour away from the cuts [56], as shown
in Fig. 1.6. The equivalence of the sum over hadronic states with a contour ranging far
from the physical region is called \global duality". This procedure is advantageous, because
T �� can be reliably described by an operator product expansion (OPE) far (compared to
�QCD) from its singularities in the complex q � v plane [53{55]. One simply replaces the
time ordered product

�i
Z
d4x e�iq�x TfJ�y(x)J�(0)g ; (1.141)

appearing in Eq. (1.138), with a series of local operators multiplied with Wilson coeÆcients.
The Wilson coeÆcients of this OPE can again be evaluated in a perturbation series in
�s(mb). Higher dimension operators in the OPE incorporate higher powers of �QCD=mb.
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Unfortunately, the contour C must still approach the cut near the low q � v endpoint
of the integration. Using the OPE directly in the physical region is an assumption called
\local duality". It introduces an uncertainty to the calculation, which can be argued to be
small. First, in semileptonic and radiative decays the fraction of the contour which has to
be within order �QCD from the cut scales as �QCD=mb. Second, since the energy release to
the hadronic �nal state is large compared to �QCD, the imaginary part of T

�� is dominated
by multiparticle states, so it is expected to be a smooth function. In the end, the violation
of local duality is believed to be exponentially suppressed in the mQ ! 1 limit, but it is
not well understood how well it works at the scale of the b quark mass. In semileptonic
decay the agreement between the inclusive and exclusive determinations of jVcbj suggests
that duality violation is at most a few percent. But there is no known relation between the
size of duality violation in semileptonic and nonleptonic B decays [57], or between these
processes and others, such as e+e� ! hadrons.

At lowest order in �QCD=mb the OPE leads to operators of the form �b�b occur, where
� is any Dirac matrix. For � = � or �5 their matrix elements are known to all orders in
�QCD=mB

hB(pB)j�b �b jB(pB)i = 2p�B = 2mB v
� ;

hB(pB)j�b �5 b jB(pB)i = 0 : (1.142)

by conservation of the b quark number current and parity invariance of strong interactions,
respectively. The matrix elements for other gamma matrices can be related by heavy quark
symmetry to these plus order �2QCD=m

2
b corrections. Consequently, at the leading order in

�QCD=mb inclusive decay rates are given by the rate for b quark decay, multiplied with a
Wilson coeÆcient that does not depend on the decaying hadron.

To compute subleading corrections in �QCD=mb, it is convenient to use HQET. There are
no order �QCD=mb corrections because the matrix element of any gauge invariant dimension-
4 two-quark operator vanishes,

hB(v)j �h(b)v iD��h
(b)
v jB(v)i = 0 ; (1.143)

because contracting the left-hand side by v� gives zero due to the equation of motion
following from (1.127). Thus, the leading nonperturbative corrections to b quark decay
occur at order �2QCD=m

2
b . The operators that appear are again Okin and Omag so the same

hadronic elements �1 and �2, de�ned in Eq. (1.129), appear again.

Combining the matrix elements from Eqs. (1.142), (1.143) and (1.129) with the Wilson
coeÆcients leads to expressions of the form

d2�

dy dq2
=

�
b quark
decay

�
�
�
1 +

�s
�
A1 +

�2s
�2

A2 + : : :+
f(�1; �2)

m2
B

h
1 +O(�s) + : : :

i
+O(�3QCD=m3

B) + : : :

�
: (1.144)

The di�erential rate may be integrated to obtain the full rate. The description in (1.144) is
model independent, although �1 must be determined either from data [58] or from lattice
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Figure 1.7: OPE diagrams for nonleptonic B decays. The left one is the leading
contribution, while the \Pauli interference" diagram on the right corresponds to a
dimension-6 contribution of order 16�2 (�3QCD=m

3
B).

QCD [59]. For most quantities of interest the functions f , A1, and the part of A2 propor-
tional to �0, the �rst coeÆcient of the �-function, are known. Corrections to the mb !1
limit are expected to be under control in parts of the B ! Xq ` �� phase space where several
hadronic �nal states are allowed (but not required) to contribute with invariant mass and
energy satisfying m2

X � m2
q +�QCDEX .

1.5.3.2 Inclusive nonleptonic B decays

Inclusive nonleptonic decays can also be studied using the OPE, and much of the discussion
in Sec. 1.5.3.1 applies here also. In this case, however, there are no \external" variables,
such as q2 and q � v, since all particles in the �nal state interact strongly. For this reason,
only the fully integrated inclusive width can be treated with the OPE, term-by-term in the
weak Hamiltonian. For example, the B decay width corresponding to the b! c�ud e�ective
Hamiltonian in (1.110){(1.111) is given by

� =
1

2mB

X
X

(2�)4 Æ4(pB � pX)
���hX(pX )jH j�Bj=1(0) jB(pB)i

���2
=

1

2mB
Im hBj i

Z
d4xT

n
H j�Bj=1(x)H j�Bj=1(0)

o
jBi : (1.145)

Because one has to use the OPE directly in the physical region, the results are more sensitive
to violations of local duality than in the case of semileptonic and radiative decays. The
leading term in the OPE corresponds to the left diagram in Fig. 1.7, whose imaginary part
gives the total nonleptonic width.

The result is again of the form shown in Eq. (1.144). An important new ingredient
at order �3QCD=m

3
B are certain contributions due to four-quark operators involving the

spectator quark. They are usually called \weak annihilation", \W exchange", and \Pauli
interference" contributions. (The last is sketched on the right in Fig. 1.7). They contain
one less loop than the diagram on the left, so they are enhanced by a relative factor of 16�2.
They are expected to be more important than the dimension-5 contributions proportional
to �1 and �2. The matrix elements of the resulting four-quark operators are poorly known.
Such contributions are expected to explain the D� �D0 lifetime di�erence.
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Figure 1.8: OPE diagram for the Bs width di�erence.

1.5.3.3 Bs width di�erence, ��

Another important application, especially for the Tevatron, is for the Bs width di�erence.
The o�-diagonal element of the width matrix (cf., Sec. 1.3.2) is given by

�12 =
1

2mBs

X
X

(2�)4 Æ4(pBs � pX) hBsjH j�Bj=1 jXi hXjH j�Bj=1 jBsi

=
1

2mBs

Im hBsj i
Z
d4xT

n
H j�Bj=1(x)H j�Bj=1(0)

o
jBsi : (1.146)

The �rst line de�nes �12, and the second line can be veri�ed by inserting a complete set of
intermediate states. The corresponding diagram is shown in Fig. 1.8. �12 arises from �nal
states X which are common to both Bs and Bs decay. Therefore, the spectator quark is
involved, and Eq. (1.146) is dominated by the b ! c�cs part of the weak Hamiltonian, O1

and O2 in Eq. (1.112), with the others, O3 through O6, making very small contributions.

Thus, the naive estimate of the Bs width di�erence is ��Bs=�Bs = 2 j�12j cos�=�Bs �
16�2(�3QCD=m

3
B) � 0:1. In the Bd system the common decay modes of B0 and B0 are sup-

pressed relative to the leading ones by the Cabibbo angle, and therefore the naive estimate
is ��Bd=�Bd <� 1%. See the discussion following (1.63) and Chapter 8 for more details.

1.5.4 Lattice QCD

If one considers the long term goal of \measuring" the Wilson coeÆcients of the electroweak
Hamiltonian, as outlined elsewhere, then it is clear that it will be important to gain the-
oretical control over hadronic matrix elements. Since QCD is a completely well-de�ned
quantum �eld theory, the calculation of hadronic matrix elements should be, in principle,
possible. The main diÆculty is that hadronic wavefunctions are sensitive mostly to the long
distances where QCD becomes nonperturbative.

The diÆculties of the bound-state problem in QCD led Wilson [60] to formulate gauge
�eld theory on a discrete spacetime, or lattice. The basic idea starts with the functional
integral for correlation functions in QCD

hO1 � � �Oni = 1

Z

Z Y
x;�

dA�(x)
Y
x

d (x)d � (x)O1 � � �On e�SQCD (1.147)

where Z is de�ned so that h1i = 1. For QCD A� is the gluon �eld,  and � are the quark
and antiquark �elds, and SQCD is the QCD action. The Oi are operators for creating and
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annihilating the hadrons of interest and also terms in the electroweak Hamiltonian. The
continuous spacetime is then replaced with a discrete grid of points, or lattice. Then the
quark variables live on sites; the gluons on links connecting the sites. With quarks on sites
and gluons on links, it is possible to devise lattice actions that respect gauge symmetry. As
in discrete approximations to partial di�erential equations, derivatives in the Lagrangian
are replaced with di�erence operators.

The breakthrough of the lattice formulation is that it turns quantum �eld theory into a
mathematically well-de�ned problem in statistical mechanics. Condensed matter theorists
and mathematical physicists have devised a variety of methods for tackling such problems,
only one of which is weak-coupling perturbation theory. In the years immediately following
Wilson's work, many of these tools were tried, for example analytical strong coupling ex-
pansions. The strong coupling limit is especially appealing, because con�nement emerges
immediately [61].

Strong coupling is, however, not the whole story. Owing to asymptotic freedom, the
continuum limit of lattice QCD is controlled by weak coupling. Unfortunately, strong
coupling expansions do not converge quickly enough to reach into the weak-coupling regime,
at least with the simple discretizations that have been used till now. Consequently, results
from strong coupling expansions for hadron masses and matrix elements are not close enough
to continuum QCD to apply to particle phenomenology.

Since such analytical methods have not borne out, the tool of choice now is to com-
pute (the discrete version of) Eq. (1.147) numerically via Monte Carlo integration. This
numerical method has, over the years, developed several specialized features, and corre-
sponding jargon, that often make its results impenetrable to non-experts. Moreover, as
with any numerical method, there are several sources of systematic uncertainty. Most of
the systematic e�ects can, however, be controlled with e�ective �eld theories, i.e., with
techniques like those explained in the previous sections. After reviewing the basic elements
of the Monte Carlo method, we cover the systematic e�ects. First is the so-called quenched
approximation, which is diÆcult to control, but also not a fundamental limitation. Other
uncertainties, which can be controlled, are reviewed next, emphasizing the role of e�ective
�eld theories. It is hoped that in this way non-experts can learn to make simple estimates
of size systematic uncertainties, without repeating all the steps of the numerical analysis.
We end with a comment on the (unsatisfactory) status of computing strong phase shifts for
B decays.

1.5.4.1 Monte Carlo integration

This part of the method is well understood and, these days, rarely leads to controversy. For
completeness, however, we include a short explanation, focusing on the points that limit the
range of applicability of the method. A more thorough treatment aimed at experimenters
can be found in Ref. [62].

The �rst salient observation is that there are very many variables. Continuum �eld
theory has uncountably many degrees of freedom. Field theory on an in�nite lattice still
has an in�nite number of degrees of freedom, but at least countably in�nite. (This makes
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the products over x in Eq. (1.147) well-de�ned.) To keep the number �nite (for a computer
with �nite memory), one must also introduce a �nite spacetime volume. This may seem
alarming, but what one has done is simply to introduce an ultraviolet cuto� (the lattice)
and an infrared cuto� (the �nite volume). This is usual in quantum �eld theory, and �eld
theoretic techniques can be used to understand how to extract cuto�-free quantities from
numerically calculable cuto� quantities.

Even with a �nite lattice, the number of integration variables is large. If one only
demands a volume a few times the size of a hadron and also several grid points within a
hadron's diameter, one already requires at least, say, 10 points along each direction. In four-
dimensional spacetime this leads to � 32 � 104 gluonic variables. With so many variables,
the only feasible methods are based on Monte Carlo integration. The basic idea of Monte
Carlo integration is simple: generate an ensemble of random variables and approximate the
integrals in Eq. (1.147) by ensemble averages.

Quarks pose special problems, principally because, to implement Fermi statistics, fermi-
onic variables are Grassmann numbers. In all cases of interest, the quark action can be
written

SF =
X
��

� �M�� � ; (1.148)

where � and � are multi-indices for (discrete) spacetime, spin and internal quantum num-
bers. The matrix M�� is some discretization of the Dirac operator =D + m. Note that it
depends on the gauge �eld, but one may integrate over the gauge �elds after integrating
over the quark �elds. Then, because the quark action is a quadratic form, the integral can
be carried out exactly: Z Y

��

d � �d � e
� � M = detM: (1.149)

Similarly, products  � � � in the integrand are replaced with quark propagators [M�1]�� .
The computation of M�1 is demanding, and the computation of detM (or, more precisely,
changes in detM as the gauge �eld is changed) is very demanding.

With the quarks integrated analytically, it is the gluons that are subject to the Monte
Carlo method. The factor with the action is now detMe�S , where S is now just the gluons'
action. Both detM and e�S are the exponential of a number that scales with the spacetime
volume. In Minkowski spacetime the exponent is an imaginary number, so there are wild
uctuations for moderate changes in the gauge �eld. On the other hand, in Euclidean
spacetime, with an imaginary time variable, S is real. In that case (assuming detM is
positive de�nite) one can devise a Monte Carlo with importance sampling, which means that
the random number generator creates gauges �eld weighted according to detMe�S . Because
importance sampling is essential, only in Euclidean spacetime is lattice QCD numerically
tractable.

Importance sampling works well if detM is positive. For pairs of equal-mass quarks, this
is easy to achieve. As a result, most calculations of detM are for 2 or 4 avors. Note that
a physically desirable situation with three avors, with the strange quark's mass di�erent
from that of two lighter quarks, must either cope with (occasional) non-positive weights, or
�nd a (new) discretization with detM positive avor by avor.
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The choice of imaginary time has an important practical advantage. Consider the two-
point correlation function

C2(t) = h0j�B(t)�y
B(0)j0i; (1.150)

where �B is an operator with the quantum numbers of the B meson at rest. Inserting a
complete set of states between B and By

C2(t) =
X
n

1

2mn
h0j�B jBnihBnj�y

B j0ieimnt; (1.151)

where mn is the mass of jBni, the nth radial excitation of the B meson. For real t it would
be diÆcult to disentangle all these contributions. If, however, t = ix4, with x4 real and
positive, then one has a sum of damped exponentials. For large x4 the lowest-lying state
dominates and

C2(x4) = (2mB)
�1jh0j�B jBij2e�mBx4 + � � � ; (1.152)

where jBi is the lowest-lying state and mB its mass. The omitted terms are exponen-
tially suppressed. It is straightforward to test when the �rst term dominates a numerically
computed correlation function, and then �t the exponential form to obtain the mass.

This technique for isolating the lowest-lying state is essential also for obtaining hadronic
matrix elements. For B0 �B0 mixing, for example, one must compute the matrix element
hB0jQjB0i, given in Eq. (1.118). One uses a three-point correlation function

CQ(x4; y4) = h0j�B(x4 + y4)Q(y4)�B(0)j0i; (1.153)

where only the Euclidean times of the operators have been written out. Inserting complete
sets of states and taking x4 and y4 large enough,

CQ(x4; y4) = (2mB)
�1(2mB)

�1h0j�B jBihBjQjBihBj�B j0ie�mBx4�mB
y4 : (1.154)

The amplitude (h0j�B jBi = hBj�B j0i) and mass (mB = mB) are obtained from C2, leaving
hBjQjBi to be determined from CQ. Similarly, to obtain amplitudes for B decays to a single
hadron (plus leptons or photons), simply replace one of the �B operators with one for the
desired hadron and Q with the desired operator. To compute the purely leptonic decay,
simply replace �B in C2 with the charged current.

These methods are conceptually clean and technically feasible for the calculation of
masses and hadronic matrix elements with at most one hadron in the �nal state. The pro-
cedure for computing correlation functions is as follows. First generate an ensemble of lattice
gluon �elds with the appropriate weight. Next form the desired product O1 � � �On, with
quark variables exactly integrated out to form propagators M�1. Then take the average
over the ensemble. Finally, �t the Euclidean time dependence of Eqs. (1.152) and (1.154).
Note that since the same ensemble is used for many similar correlation functions, the sta-
tistical uctuations within the ensemble are correlated. This is not a concern, as long as
the correlations are propagated sensibly through the analysis.
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1.5.4.2 Quenched approximation

Any perusal of the literature on lattice QCD quickly comes across something called the
\quenched approximation." As mentioned above, the factor detM in Eq. (1.149) is diÆcult
to incorporate. The determinant generates sea quarks inside a hadron. The quenched ap-
proximation replaces detM with 1 and compensates the corresponding omission of the sea
quarks with shifts in the bare couplings. This is analogous to a dielectric approximation
in electromagnetism, and it fails under similar circumstances. In particular, if one is inter-
ested in comparing two quantities that are sensitive to somewhat di�erent energy scales,
one cannot expect the same dielectric shift to suÆce. Another name for the quenched ap-
proximation is the \valence" approximation, which makes clearer that the valence quarks
(and gluons) in hadrons are treated fully, and the sea quarks merely modeled.

It is not easy to estimate quantitatively the e�ect of quenching. For �s [63] and the
quark masses [64] one can compute the short distance contribution to the quenching shift,
but that is only a start. The quenched approximation can be cast as the �rst term in a
systematic expansion [65], but it is about as diÆcult to compute the next term as to restore
the fermion determinant. In the context of heavy quark physics one should note that the
CP-PACS [66] and MILC [67] groups now have unquenched calculations of the heavy-light
decay constants fB, fBs , fD, and fDs . Both have results at several lattice spacings, so they
can study the a dependence. Their results are about 10{15% higher than the most mature
estimates from the quenched approximation.

1.5.4.3 Controllable systematic uncertainties

By a controllable systematic uncertainty we mean an uncertainty that can be incrementally
improved in a well-de�ned way. In lattice QCD they arise from the ultraviolet and infrared
cuto�s, and also from the fact that quark masses are freely adjustable and, for technical
reasons, not always adjusted to their physical values. Because these e�ects are subject
to theoretical control, the errors they introduce can largely be reduced to a level that is
essentially statistical, given enough computing.

One of the least troublesome systematic e�ects comes from the �nite volume. Finite-
volume e�ects can be understood separately from lattice-spacing e�ects with an e�ective
massive quantum �eld theory [68]. In some cases adjusting the volume at will is, at least in
principle, a boon, yielding valuable information, such as scattering lengths and resonance
widths.

The computer algorithms for computing the quark propagator M�1 converge more
quickly at masses near that of the strange quark than for lighter masses. Consequently,
the Monte Carlo is run at a sequence of light quark masses typically in the range 0:2ms <�
mq <� ms. (The up and down quark masses are far smaller still and not reached.) The
dependence on mq can be understood and controlled via the chiral Lagrangian [69], another
e�ective �eld theory. A recent development is to show in detail how to extract physical
information from results at practical values of the light quark masses [70].

A special diÆculty with heavy quarks is the e�ect of non-zero lattice spacing. The
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bottom and charmed quark masses are large in lattice units. For this reason it is frequently
(but incorrectly) stated that heavy quarks cannot be directly accommodated by a lattice.
From the inception of HQET and NRQCD, these e�ective �eld theories have been used
to treat heavy quarks, and more recently it has been shown how to use these tools to
understand the discretization e�ects of heavy quarks discretized with the original Wilson
formulation [71].

Let us �rst recall how lattice-spacing e�ects are controlled for systems of light quarks.
Long ago, Symanzik introduced a local e�ective Lagrangian (LEL) to describe cuto� ef-
fects [72]. One writes

Llat := Lcont +
X
i

asOiKi(a;�)Oi(�); (1.155)

where sOi = dimOi � 4. The symbol
:
= means \has the same (on-shell) matrix elements

as". For operators such as Q, needed for mixing,

Qlat
:
= Z�1

Q (a;�)Qcont(�) +
X
i

asQiCi(a;�)Qi(�); (1.156)

where now sQi
= dimQi � dimQ. The continuum operators Oi, Qcont, and Qi are de�ned

in a mass-independent scheme at scale �. They do not depend on the lattice spacing a.
The coeÆcients Ki, ZQ, and Ci account for short distance e�ects, so they do depend on a.

If a is small enough the higher terms can be treated as perturbations. So, the a depen-
dence of hBjQlatjBi is

hBjQlatjBi = Z�1
Q hBjQcontjBi+aK�F hBjT Qcont

Z
d4x � � �F jBi+aC1hBjQ1jBi; (1.157)

keeping only contributions of order a. To reduce the unwanted terms one might try to
reduce a greatly, but CPU time goes as a�(5 or 6). It is more e�ective to use a sequence of
lattice spacings and extrapolate, with Eq. (1.157) as a guide. It is even better to adjust
things so K�F and K1 are O(�`s) [73] or O(a) [74], which is called Symanzik improvement.
For light hadrons, a combination of improvement and extrapolation is best. Note that
one still has to adjust Qlat so that ZQ = 1. In some cases the needed adjustment can be
made nonpertubatively, even though it is a short distance quantity. When that is possible,
lattice QCD can provide results with no perturbative uncertainty, although perturbative
uncertainty may reenter through the electroweak Hamiltonian.

The Symanzik theory, as usually applied, assumes mqa� 1. The bottom and charmed
quarks' masses in lattice units are at present large: mba � 1{2 and mca about a third of
that. It will not be possible to reduce a enough to make mba � 1 for many, many years.
So, other methods are needed to control the lattice spacing e�ects of heavy quarks. There
are several alternatives:

1. static approximation [75]

2. lattice NRQCD [76]

3. extrapolation from mQ <� mc up to mb
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30: combine 3 with 1

4. normalize systematically to HQET [77]

5. anisotropic lattices with temporal lattice spacing at � a [78]

All but the last use the heavy quark expansion in some way. The �rst two discretize
continuum HQET; method 1 stops at the leading term, and method 2 carries the heavy
quark expansion out to the desired order. Methods 3 and 30 keep the heavy quark mass
arti�cially small and appeal to the 1=mQ expansion to extrapolate back up to mb. Method 4
uses the same lattice action as method 3, but uses the heavy quark expansion to normalize
and improve it. Methods 2 and 4 are able to calculate matrix elements directly at the
b-quark mass. Method 5 has only recently been applied to heavy-light mesons [79], and,
like the other methods, it requires that spatial momenta are much less than mQ.

The methods can be compared and contrasted by describing the lattice theories with
HQET [80]. This is, in a sense, the opposite of discretizing HQET. One writes down a
(continuum) e�ective Lagrangian

Llat :=
X
n

C(n)lat (mQa;�)O
(n)
HQET(�); (1.158)

with the operators O
(n)
HQET de�ned exactly as in Sec. 1.5.2, so they do not depend on mQ

or a. As long as mQ � �QCD this description makes sense. There are two short distances,

1=mQ and the lattice spacing a, so the short distance coeÆcients C(n)lat depend on mQa.
Since all dependence on mQa is isolated into the coeÆcients, this description shows that

heavy quark lattice artifacts arise only from the mismatch of the C(n)lat and their continuum

analogs C(n)cont.

For methods 1 and 2, Eq. (1.158) is just a Symanzik LEL. For lattice NRQCD we recover

the result that some of the coeÆcients C(n)lat have power-law divergences as a ! 0 [76]. So,
to obtain continuum (NR)QCD, one must add more and more terms to the action. (This is
just a generic feature of e�ective �eld theories, namely, that accuracy is improved by adding
more terms, rather than taking the cuto� too high.) The truncation leaves a systematic
error, which, in practice, is usually accounted for conservatively.

Eq. (1.158) is more illuminating for methods 3{5, which use the same actions, but with
di�erent normalization conditions. The lattice quarks are Wilson fermions [71], which have
the same degrees of freedom and heavy quark symmetries as continuum quarks. Thus,
the HQET description is admissible for all mQa. Method 4 matches the coeÆcients of
Eq. (1.158) term by term to Eq. (1.127), by adjusting the lattice action and operators. In

practice, this is possible only to �nite order, so there are errors (C(n)lat �C(n)cont)hO(n)
HQETi. The

rough size of matrix element here is �dimO�4
QCD . The coeÆcients balance the dimensions with

a and 1=mQ. If C(n)lat is matched to C(n)cont in perturbation theory, the di�erence is of order �
`
s.

Method 3 arti�cially reduces mQa until the mismatch is of order (mQa)
2. This would be

�ne if mQa were small enough, but with currently available lattices, mQa is small only
if mQ is reduced until the heavy quark expansion falls apart. In method 5 the temporal
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lattice spacing at is smaller than the spatial lattice spacing. The behavior of the mismatch

C(n)lat � C(n)cont for practical values of mQ and at is still an open question [81].

The non-expert can get a feel for which methods are most appropriate by asking himself
what order in �QCD=mb is needed. For zeroth order, method 1 will do. Perhaps the only
quantity where this is suÆciently accurate is the mass of the b quark, where the most
advanced calculation [82] neglects the subleading term �1=mb in Eq. (1.130). For matrix
elements, the �rst non-trivial terms are those of Eq. (1.128), so the other methods must
be used. With method 3 one should check that mQ=�QCD is large enough; so far, all work
with this method is worrisome in this respect.

Most of the matrix elements that are of interest to B physics will soon be recalculated,
like fB [66,67] and mb [82], with two avors of sea quarks. It seems, therefore, not useful
tabulate quenched results. One can consult recent reviews focusing on the status of matrix
elements instead [83].

1.5.4.4 Strong phases of nonleptonic decays

In consideringCP asymmetries one encounters strong phase shifts. It is therefore interesting
to consider computing them in lattice QCD.

A short summary is that this is still an unsolved problem, at least for inelastic decays,
such as B decays. This does not mean that it is an unsolvable problem, but at this time
numerical lattice calculations are not helpful for computing scattering phases above the
inelastic threshold.

Often an even bleaker picture is painted, based on a super�cial understanding a theorem
of Maiani and Testa [84]. The theorem assumes an in�nite volume and is, thus, relevant
only to extremely large volumes. In volumes of (2{6 fm)3 it is possible to disentangle
phase information, because the scattering phase shift enters into the �nite-volume boundary
conditions of the �nal-state two-body wave function [85]. This works, however, only in the
kinematic region with two-body �nal states. This has been worked out explicitly for kaon
decays [86], giving also references to earlier work.

1.6 Constraints from Kaon Physics

There are two strong reasons for the discussion of the neutral kaon system in a report on
B physics. First, for more than 30 years the only observation of CP violation was in the
neutral kaon system. Over these years the formalism used to describe CP violation has
changed, partly because our theoretical understanding of the subject has improved. One
example of this development is the present classi�cation of three, rather than two, types
of CP violation, as explained in Sec. 1.4.1. Second, the Standard Model expresses all CP
violating quantities in terms of the same CKM phase. The consistency of the experiments in
B physics with those in the kaon system therefore provides a stringent test of the Standard
Model. In practice both B and K data are used to overconstrain the unitarity triangle:
the indirect constraints on sin2�, in particular its sign, rely largely on �K . Any future
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inconsistency in the overdetermined unitarity triangle indicates new physics either in the B
or K system or in both.

Sec.1.6.1 describes the neutral kaon system with the modern formalism and makes con-
tact with the formalism traditionally used for kaon physics. To show how kaon measure-
ments shape our expectations for B physics, Sec. 1.6.2 discusses the already measured
CP violating quantities �K and �0K . In a similar vein, Sec. 1.6.3 deals with the rare decays
K+ ! �+��� and KL ! �0���, which are the target of new high-precision kaon experiments.

1.6.1 The neutral kaon system

CP violation in K0�K0 mixing was discovered in 1964 [31]. The quantity �K , which is
discussed in Sec. 1.6.2, is of key importance to test the CKM mechanism of CP violation,
because new physics enters K and B physics in di�erent ways. We introduce the neutral
kaon system using the same formalism as for the B-meson system as derived in Sec. 1.3 and
translate it to the traditional notation.

The lighter mass eigenstate of the neutral kaon is jKSi and the heavier one is jKLi,
where the subscripts refer to their short and long lifetimes. They are

jKSi = p jK0i+ q jK0i = (1 + �) jK0i � (1� �) jK0ip
2 (1 + j�j2) ;

jKLi = p jK0i � q jK0i = (1 + �) jK0i+ (1� �) jK0ip
2 (1 + j�j2) : (1.159)

The quantity

� =
1 + q=p

1� q=p
(1.160)

depends on phase conventions. (The parameter � is not to be confused with the well-known
parameter �K , de�ned in (1.169).)

CP conservation in j�Sj = 2 transitions corresponds to � = 0, in which case jKSi
and jKLi become the CP even and CP odd eigenstates. CP violation in mixing is well-
established from the semileptonic CP asymmetry

Æ(`) =
�(KL ! `+� ��)� �(KL ! `��� �+)

�(KL ! `+� ��) + �(KL ! `��� �+)

=
1� jq=pj2
1 + jq=pj2 =

2Re �

1 + j�j2 = (3:27 � 0:12) � 10�3 : (1.161)

The quoted numerical value is the average for ` = e and � [15]. From (1.161) it is clear that
in the kaon system jq=pj is close to one. In the B systems jq=pj is close to one because the
width di�erence is smaller than the mass di�erence. Here, however, they are comparable [15]

�mK = (0:5301 � 0:0014) � 1010 s�1; ��K = (1:1174 � 0:0010) � 1010 s�1 : (1.162)
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Hence one concludes that jq=pj � 1 is so small, because the relative phase � between M12

and ��12 (cf., (1.62)) is close to zero. Expanding in � one easily �nds from (1.61) that

jM12j = �mK

2
+O

�
�2
�
; j�12j = ��K

2
+O

�
�2
�
; (1.163a)

q

p
= �e�i�M

�
1� �

��K=2

�mK + i��K=2
+O

�
�2
��
: (1.163b)

Hence (1.163b) and (1.161) allow us to solve for the CP violating phase �:

� =
(�mK)

2 + (��K=2)
2

�mK��K=2
Æ(`) + O

�
�2
�
= (6:6� 0:2) � 10�3 : (1.164)

In the literature on K ! �� decays the following amplitude ratios are introduced:

�+� =
h�+��jKLi
h�+��jKSi ; �00 =

h�0�0jKLi
h�0�0jKSi : (1.165)

If CP were conserved, both would vanish. The moduli and phases of �+� and �00 have
been measured to be

j�+�j = (2:285 � 0:019) � 10�3 ; �+� = 43:5Æ � 0:6Æ ;

j�00j = (2:275 � 0:019) � 10�3 ; �00 = 43:4Æ � 1:0Æ ; (1.166)

according to the PDG �t [15]. All three types of CP violation lead to non-zero �+� and
�00. To separate j�Sj = 2 from j�Sj = 1 CP violation one introduces isospin states

j�0�0i =
r
1

3
j (��)I=0i �

r
2

3
j (��)I=2i ;

j�+��i =
r
2

3
j (��)I=0i+

r
1

3
j (��)I=2i ;

and isospin amplitudes

AI = h(��)I jK0i ; AI = h(��)I jK0i ; I = 0; 2 : (1.167)

The strong �nal state interaction of the two-pion �nal states is highly constrained by kine-
matics and conservation laws: the CP invariance of the strong interaction forbids a two-pion
state to scatter into a three-pion state and the rescattering into a state with four or more
pions is kinematically forbidden. Furthermore, isospin is an almost exact symmetry of QCD
and forbids the rescattering between the two isospin eigenstates. Hence the �nal state in-
teraction of the I = 0 and I = 2 states is only elastic and, thus, fully described by two
scattering phases. This feature is known as Watson's theorem [87]. Hence we can write

AI = jAI jei�I eiÆI ; AI = �jAI je�i�I eiÆI ;
�I =

q

p

AI
AI

= e�i(2�I+�M )
�
1� �

��K=2

�mK + i��=2

�
+O(�2) ; (1.168)
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where the two scattering phases ÆI are empirically determined to be Æ0 � 37Æ and Æ2 � �7Æ.
Several weak amplitudes (with di�erent CP violating phases) contribute to jAI jei�I , but
the presence of a single strong phase allows to write AI as in (1.168), ensuring jAI=AI j = 1.
Therefore, there is no direct CP violation in K ! (��)I . Note that our de�nition of A0

and A2 includes both the weak and strong phases, in accordance with the formalism used
in B physics. In the kaon literature the AI 's are commonly de�ned without the factors e

iÆI .

A simpli�cation arises from the experimental observation that jA0j ' 22 jA2j, which is
called �I = 1=2 rule. This enhancement of jA0j allows to expand in jA2=A0j. The CP
violating quantity �K reads

�K =
�00 + 2 �+�

3
=
h(��)I=0jKLi
h(��)I=0jKSi

"
1 +O

 
A2
2

A2
0

!#
=

1� �0
1 + �0

: (1.169)

Hence �K is de�ned in a way that to zeroth and �rst order in A2=A0 only a single strong
amplitude contributes and therefore CP violation in decay is absent. The I = 0 two-pion
state dominates the KS width �S. Thus hK0j(��)I=0ih(��)I=0jK0i almost saturates �12,
so that the phase �M � � of ��12 equals �2�0 up to tiny corrections of order A2

2=A
2
0 and

�L=�S . This implies that �K does not provide any additional information compared to the
semileptonic asymmetry in (1.161). We �nd from (1.168)

�0 = 1� i �
�mK

�mK + i��K
+O

 
�2;

A2
2

A2
0

;
�L
�S

!
; (1.170)

and (1.169) evaluates to

�K =
�

2

�mKp
(�mK)2 + (��K=2)2

ei�� +O
 
�2;

A2
2

A2
0

;
�L
�S

!
with �� = arctan

�mK

��K=2
:

(1.171)
From (1.166) one �nds the experimental value:

�K = ei (0:97�0:02) �=4 (2:28 � 0:02) � 10�3 : (1.172)

Therefore (1.171) yields

� = (6:63 � 0:06) � 10�3 ; (1.173)

in perfect agreement with (1.164). A numerical accident leads to �mK � ��K=2, which
explains why the phase �� in (1.171) is so close to �=4.

To �rst order in � one �nds from (1.169)

�K ' 1

2
[1� �0] ' 1

2

�
1�

����qp
����� i Im�0

�
: (1.174)

Therefore Re �K measures CP violation in mixing and Im �K measures interference type
CP violation.

CP violation in j�Sj = 1 transitions is characterized by
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�0K =
�+� � �00

3
=
�Kp
2

�h(��)I=2jKLi
h(��)I=0jKLi �

h(��)I=2jKSi
h(��)I=0jKSi

� �
1 +O

�
A2

A0

��
=
A2

A0

1p
2

�
1� �2
1 + �0

� (1� �0)(1 + �2)

(1 + �0)2

�
: (1.175)

Next we use
�2 = �0 e

2 i (�0��2) ; (1.176)

and expand to �rst order in the small phases:

�0K =
1

2
p
2

A2

A0
(�0 � �2) +O

 
A2
2

A2
0

; �2 ; (�0 � �2)
2

!
=

1p
2

A2

A0
i (�2 � �0) : (1.177)

A non-vanishing value of �0K implies di�erent CP violating phases in the two isospin am-
plitudes and therefore j�Sj = 1 CP violation. Since experimentally Re �0K > 0, one �nds
�2 > �0. The phase of �

0
K is 90Æ + Æ2 � Æ0 ' 46Æ and �0K=�K is almost real and positive.

Since (1.177) does not depend on q=p, there is no contribution from CP violation in
mixing to �0K . The strong phases drop out in the combination

Im
A0

A2
�0K '

1

2
p
2
(Im�0 � Im�2) : (1.178)

Since we work to �rst order in �, we can set j�I j = 1, and therefore (1.178) purely measures
interference type CP violation. From the de�nition in (1.175) one further �nds that

Re �0K '
1

6

 
1�

�����A�0�0 A�+��A�0�0 A�+��

�����
!
' 1p

2

jA2j
jA0j sin (Æ0 � Æ2) (�2 � �0) (1.179)

originates solely from jAf=Af j 6= 1. Hence Re �0K measures CP violation in decay.

Experimentally the quantity j�00=�+�j2 = 1� 6Re �0K=�K has been determined. Recent
results are

Re
�0K
�K

= (20:7 � 2:8) � 10�4 (KTeV) [88] ;

Re
�0K
�K

= (15:3 � 2:6) � 10�4 (NA48) [89]: (1.180)

We therefore �nd from (1.177) that the di�erence of the CP violating phases is tiny:

�2��0 = (1:5� 0:2) � 10�4 (KTeV) ; �2��0 = (1:1� 0:2) � 10�4 (NA48) : (1.181)

1.6.2 Phenomenology of �K and �0
K

In order to exploit the precise measurement of � = � argM12=�12 from �K in (1.173) one
must calculate the phases of

M12 =
1

2mK
hK0jH j�Sj=2jK0i �Disp

i

4mK

Z
d4x hK0jH j�Sj=1(x)H j�Sj=1(0)jK0i :

(1.182)
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and

�12 = Abs
i

2mK

Z
d4x hK0jH j�Sj=1(x)H j�Sj=1(0)jK0i (1.183)

=
1

2mK

X
f

(2�)4Æ4(pK � pf )hK0jH j�Sj=1jfi hf jH j�Sj=1jK0i ' 1

2mK
A�
0A0 :

Here Abs denotes the absorptive part of the amplitude. It is calculated by retaining only
the imaginary part of the loop integration while keeping both real and imaginary parts of
complex coupling constants. Analogously, the dispersive part Disp is obtained from the real
part of the loop integral.

The second term in (1.182) shows that, at second order, also the j�Sj = 1 Hamiltonian
contributes to M12. In the B system the corresponding contribution is negligibly small.
The Standard Model j�Sj = 2 Hamiltonian reads

H j�Sj=2 =
G2
F

4�2
MW

h
��2c �1 S(xc) + ��2t �2 S(xt)

+ 2��c �
�
t �3 S(xc; xt)

i
bK(�)QK(�) + h:c: (1.184)

It involves the j�Sj = 2 operator

QK(�) = dL�sL dL
�sL : (1.185)

In (1.184) �q = VqdV
�
qs, xq = m2

q=M
2
W and S(x) is the Inami-Lim function introduced in

(1.120). The third function S(xc; xt) comes from the box diagram with one charmed and
one top quark. One �nds S(xc) ' xc, S(xc; xt) ' xc(0:6 � lnxc) and S(xt) ' 2:4 for
mt ' 167GeV in the MS scheme. Short distance QCD corrections are contained in the �i's.
In the MS scheme the next-to-leading order results are �1 = 1:4� 0:3, �2 = 0:57� 0:01 and
�3 = 0:47 � 0:04 [90]. �1 strongly depends on mc and �s, the quoted range corresponds to
mc = 1:3GeV. A common factor of the QCD coeÆcients is bK(�), the kaon analogue of
bB(�) encountered in (1.119). The matrix element of QK is parameterized as

hK0jQK(�)jK0i = 2

3
f2Km

2
K

bBK
bK(�)

; (1.186)

where fK is the kaon decay constant.

CP violation in the kaon system is related to the squashed unitarity triangle with sides
j�uj, j�cj and j�tj. In the limit �t = 0 all CP violation vanishes, thus CP violation is
governed by the small parameter Im (�t=�u). This explains the smallness of the measured
phases in (1.173) and (1.181). This pattern is a feature of the CKM mechanism of CP
violation and need not hold in extensions of the Standard Model. Hence kaon physics
provides a fertile testing ground for non-standard CP violation related to the �rst two
quark generations.

The presence of the second term in (1.182) impedes the clean calculation of the mixing
phase �M = argM12 in terms of the CKM phases. It constitutes a long distance contri-
bution, which is not proportional to bBK . Since both terms in (1.182) have di�erent weak
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phases, �M involves the ratio of the two hadronic matrix elements. This is di�erent from the
case in B0�B0 mixing where only one hadronic matrix element contributes in the Standard
Model, which therefore cancels from �M . The long distance j�Sj = 1 piece is hard to cal-
culate and is usually eliminated with the help of the experimental value of �mK = 2 jM12j
in (1.162). Then, however, our expression for the mixing phase �M still depends on the
hadronic parameter bBK .

The phases of both �M and arg �12 are close to arg �u, which vanishes in the CKM
phase convention. The dominant corrections to �M stems from the term proportional
to ��2t in H j�Sj=2. For arg �12 we need the j�Sj = 1 Hamiltonian, which is obtained
from the j�Bj=1 Hamiltonian in (1.115) by replacing �u;c;t with �u;c;t and replacing the
b quark �eld in the operators by an s �eld. The leading contribution to arg(��12) �
�2�0, is proportional to Im�t h(��)I=0jQ6jK0i=jA0j. The �I = 1=2 enhancement of jA0j
suppresses �0, which is calculated to �0 = O(2 � 10�4) [91]. Hence in the CKM phase
convention arg(��12) contributes roughly 6% to the measured phase � in (1.173) and one
can approximate � � �M . After expressing the CKM elements in (1.184) in terms of the
improved Wolfenstein parameters the constraint from the measured value in (1.173) can be
cast in the form [90,92]

5:3� 10�4 = bBKA2 �
n
[1� �+�(�; �)]A2�4�2 S(xt) + �3S(xc; xt)� �1xc

o
: (1.187)

In the absence of the small term �(�; �) = �2
�
�� �2 � �2

�
this equation de�nes a hyper-

bola in the (�; �) plane. The largest uncertainties in (1.187) stem from bBK and A = jVcbj=�2,
which enters the largest term in (1.187) raised to the fourth power. Hence, reducing the
error of jVcbj improves the �K constraint.

It is more diÆcult to analyze �0K , because the weak phases �0 and �2 are much harder
to compute than �M . �2 is essentially proportional to Im�t h(��)I=2jQ8 jK0i=jA2j. The
two matrix elements entering �2 � �0 are diÆcult to calculate and numerically tend to
cancel each other. Especially there is a controversy about h(��)I=0jQ6jK0i and the dif-
ferent theoretical estimates can accommodate for both the KTeV and the NA48 result in
(1.181) [91,93]. Even after the experimental discrepancy in (1.180) is resolved, �0K will
not immediately be useful to determine Im�t ' A2�5�. Nevertheless, �0K can be useful to
constrain new physics contributions [94]. For recent overviews on �0K we refer to [95].

1.6.3 K ! ����

Rare kaon decays triggered by loop-induced s ! d transitions can provide information on
�t and thereby on the shape of the unitarity triangle. Final states with charged leptons are
poorly suited for a clean extraction of this information, because they involve diagrams with
photon-meson couplings. Such diagrams are a�ected by long distance hadronic e�ects and
are hard to evaluate. The decays K+ ! �+�� and KL ! �0��, however, are theoretically
very clean, with negligible hadronic uncertainties. TheK ! � form factors can be extracted
from the well-measured K`3 decays. So far two K

+ ! �+�� events have been observed [96],
corresponding to a branching ratio

B(K+ ! �+��) =
�
1:57

+1:75
�0:82

�
� 10�10 : (1.188)
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Experimental proposals at BNL and Fermilab aim at a measurement of K+ ! �+�� and
KL ! �0�� at the 10% level. The constraint on the improved Wolfenstein parameters (�; �)
can be cast in the form [35]

B(K+ ! �+��)

4:57 � 10�11 = A4X2(xt)
�
1� �2

� �� �

1� �2
�2

+ (�0 � �)2
�
: (1.189)

Here X(xt) ' 1:50 comprises the dependence on mt and the NLO short distance QCD
corrections [97]. �0 � 1 + 0:27=A2 contains the contribution from the internal charm loop
[97]. The quoted numerical value corresponds to a MS mass of mc = 1:3GeV. The largest
theoretical uncertainty in (1.189), of order 5%, stems from the charm contribution. Further
the fourth power of A introduces a sizable parametric uncertainty. The equation in (1.189)
describes an ellipse in the (�; �) plane centered at (�0; 0). By inserting typical values for
the Wolfenstein parameters (e.g., � = 0:22, A = 0:8, � = 0:2 and � = 0:4 ) into (1.189) one
�nds that (1.188) is compatible with the Standard Model.

In the Standard Model the decay KL ! �0�� is CP violating. It measures interference
type CP violation, the associated phase arg ��0�� is large, of order �=(1 � �). This is
in sharp contrast to the small phases we found in (1.173) and (1.181). A measurement of
B(KL ! �0��) establishes arg ��0�� 6= � and therefore implies CP violation in the j�Sj = 1
Hamiltonian. This is the same situation as with Im (�0K A0=A2) in (1.178), which also proves
j�Sj = 1 CP violation from the di�erence of two interference type CP violating phases.
KL ! �0�� is even cleaner than K+ ! �+��, because the charm contribution is negligible.
B(KL ! �0��) is proportional to (Im�t)

2 / �2 and therefore determines the height of the
unitarity triangle

B(KL ! �0��)

1:91 � 10�10 = A4X2(xt) �
2
�
1 + �2

�
: (1.190)

Hence the two discussed branching ratios allow for a precise construction of the unitarity
triangle from kaon physics alone. Moreover the ratio of the two branching ratios is almost
independent of A and mt. It allows for a determination of sin 2� with a similar precision as
from aCP (B !  KS) [98]. New physics may enter s! d transitions in a di�erent way than
b ! s and b ! d transitions. Hence comparing of the unitarity triangles from K physics
and from B physics provides an excellent test of the Standard Model.

1.7 Standard Model Expectations

This section outlines what is known about the CKM matrix at the present time, and what
the pattern of expectations is for some of the most interesting processes in the Standard
Model.

Since most of the existing data apart from sin 2� come from CP conserving measure-
ments, it is convenient to present the constraints on the CKM matrix using the Wolfenstein
parameterization. Magnitudes of CKM matrix elements are simply related to �, A, ��, and
��. The best known of these is �, the Cabibbo angle, which is known at the 1% level. The
parameter A is determined by jVcbj, which is known with a 5% error. The uncertainty in ��
and �� is signi�cantly larger. The most important constraints come from
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Figure 1.9: The allowed region in the ��� �� plane. Also shown are the individual
constraints, and the world average sin 2�. (From Ref. [99].)

� CP violation in K0�K0
mixing described by the �K parameter;

� jVub=Vcbj measured from semileptonic B decays;

� B0�B0 mixing;

� The lower limit on Bs�Bs mixing.

A problem in translating these to constraints on the CKMmatrix is related to theoretical
uncertainties. We follow the point of view adopted in the BaBar book [4] that no con�dence
level can be attached to model dependent theory errors. Fig. 1.9 shows the result of such
an analysis from Ref. [99]. Fig. 1.10 shows the same �t on the sin2� � sin 2� plane. Note
that any value for sin 2� would still be allowed if jVubj were slightly larger, or if �mBs

were slightly smaller than their allowed ranges. Fig. 1.11 shows the allowed range in the
sin 2� �  plane, and that  is already constrained.

Some of the uncertainties entering these constraints will be signi�cantly reduced during
Run II. The hadronic matrix elements BK , f

2
Bd
BBd , and f

2
Bs
BBs need to be determined by

unquenched lattice QCD calculations. The theoretical uncertainties in jVubj and jVcbj will
also be reduced to the few percent level by unquenched lattice calculations of the exclusive
B0
d ! � ` �� and B0

d ! D(�)` �� form factors in the region of phase space where the momen-
tum of the �nal hadron is small. As discussed in Sec. 1.5.4, these lattice calculations are
straightforward in principle, but a variety of uncertainties must be brought under control.
The uncertainties in these two CKM matrix elements may be reduced in the next few years,
even without recourse to lattice QCD, using inclusive semileptonic decays. The error in
jVcbj may be reduced to 2{3% with precise determinations of a short distance b quark mass
and by gaining more con�dence about the smallness of quark-hadron duality violation. On
a similar timescale the error in jVubj may be reduced to the 5{10% level [100] by pursuing
several model independent determinations.
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